WWW2020推荐系统论文合集(已分类整理)

 1   摘要

国际顶级学术会议WWW2020定在2020年4月20-24日于中国台湾举办。受COVID-19疫情影响(疫情赶紧过去吧),大会将在线上举行。今天是大会开始的第一天。

本次会议共收到了1129篇论文投稿,录用217篇,录取率仅为19.2%。其中关于推荐系统的论文大约38篇,推荐系统占比17.5%,可见推荐系统的研究受到学术界的广泛关注。另外,值得注意的是,接收的推荐系统论文中大部分都是与工业界合作的产物,因此不管是学术界还是工业界,推荐系统都是研究的热点与重点。

针对这38篇论文,我们进行了梳理分类,如下表所示

分类数量
Practical RS6
Sequential RS6
Efficient RS‍
4
Social RS3
General RS
3
RL for RS
3
POI RS
2
Cold Start in RS
2
Security RS
2
Fairness RS
2
Explianability for RS
2
Cross-domain RS
1
Knowledge Graph RS
1
Conversational RS1
CTR for RS
1

可见,推荐系统应用的文章以及序列化推荐的文章占比较大;随后是提升推荐效率、社会化推荐、常规推荐以及利用强化学习推荐;其次是兴趣点推荐、冷启动问题研究、推荐系统中的安全性、推荐公平性以及可解释推荐的文章;最后是各有一篇跨域推荐、利用知识图推荐、对话推荐系统以及用于点击率预估的推荐。

 2   论文列表

1

Practical RS

  • Graph Enhanced Representation Learning for News Recommendation

  • Weakly Supervised Attention for Hashtag Recommendation using Graph Data

  • Personalized Employee Training Course Recommendation with Career Development Awareness

  • Understanding User Behavior For Document Recommendation

  • Recommending Themes for Ad Creative Design via Visual-Linguistic Representations

  • paper2repo: GitHub Repository Recommendation for Academic Papers

2

Sequential RS

  • Adaptive Hierarchical Translation-based Sequential Recommendation

  • Attentive Sequential Model of Latent Intent for Next Item Recommendation

  • Déjà vu: A Contextualized Temporal Attention Mechanism for Sequential Recommendation

  • Intention Modeling from Ordered and Unordered Facets for Sequential Recommendation

  • Future Data Helps Training: Modeling Future Contexts for Session-based Recommendation

  • Keywords Generation Improves E-Commerce Session-based Recommendation

3

Efficient RS

  • Learning to Hash with Graph Neural Networks for Recommender Systems

  • LightRec: a Memory and Search-Efficient Recommender System

  • A Generalized and Fast-converging Non-negative Latent Factor Model for Predicting User Preferences in Recommender Systems

  • Efficient Non-Sampling Factorization Machines for Optimal Context-Aware Recommendation

4

Social RS

  • Clustering and Constructing User Coresets to Accelerate Large-scale Top-K Recommender Systems

  • The Structure of Social Influence in Recommender Networks

  • Few-Shot Learning for New User Recommendation in Location-based Social Networks

5

Explainability for RS

  • Directional and Explainable Serendipity Recommendation

  • Dual Learning for Explainable Recommendation: Towards Unifying User Preference Prediction and Review Generation

6

POI RS

  • Next Point-of-Interest Recommendation on Resource-Constrained Mobile Devices

  • A Category-Aware Deep Model for Successive POI Recommendation on Sparse Check-in Data

7

General RS

  • Efficient Neural Interaction Function Search for Collaborative Filtering

  • Learning the Structure of Auto-Encoding Recommenders

  • Deep Global and Local Generative Model for Recommendation

8

Fairness in RS

  • Hierarchical Visual-aware Minimax Ranking Based on Co-purchase Data for Personalized Recommendation

  • FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms

9

RL for RS

  • Off-policy Learning in Two-stage Recommender Systems

  • Hierarchical Adaptive Contextual Bandits for Resource Constraint based Recommendation

10

Cross-domain RS

  • Exploiting Aesthetic Preference in Deep Cross Networks for Cross-domain Recommendation

11

Knowledge Graph RS

  • Reinforced Negative Sampling over Knowledge Graph for Recommendation

12

Conversational RS

  • Latent Linear Critiquing for Conversational Recommender Systems

13

CTR for RS

  • Adversarial Multimodal Representation Learning for Click-Through Rate Prediction

 3   官方Tutorial

最后,WWW2020还进行了两场关于推荐与搜索的Tutorial,分别是利用深度迁移学习的搜索与推荐和可信任的推荐与搜索系统,感兴趣的小伙伴可以学习一下。

【通俗易懂】手把手带你实现DeepFM!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值