推荐系统遇上深度学习(九十)-[阿里]计算成本感知的轻量级预排序系统COLD

本文介绍了预排序系统的发展,尤其是阿里巴巴的COLD系统,它是一个计算成本感知的轻量级预排序系统。COLD通过特征筛选和工程优化实现了在保证精度的同时降低计算耗时,相比基于向量内积的模型,COLD在表达能力和实时更新方面有显著提升。
摘要由CSDN通过智能技术生成

本文分享的论文是《COLD: Towards the Next Generation of Pre-Ranking System》
论文下载地址为:https://arxiv.org/abs/2007.16122

1、背景

大多数的推荐系统都遵从一种多阶段的级联结构,最为我们所熟知的就是YoutubeDNN论文中所提出的Match + Rank的两阶段结构,但在阿里的场景下,又增加了Pre-Ranking和ReRanking阶段,如下图所示:

Reranking还是比较常见的阶段,比如加入一些策略打散提升推荐的多样性等。而Pre-Ranking确实是比较少见的。其模型大小/精度介于Matching和Ranking之间。不过我感觉不需要太过纠结于是哪个阶段,或者当作Matching阶段,主要学习的论文的思路就好。

Pre-Ranking阶段可以看作是Ranking阶段的简化版,其预估的候选集数量往往限制在千级别,耗时被限制在10-20毫秒。因此Pre-Ranking阶段的模型也需要轻量化模型来满足耗时的要求。

接下来,本文首先回顾一下Pre-Ranking系统的发展,以及面临的挑战,再介绍本文提出的计算成本感知的轻量级预排序系统COLD(Computing power cost-aware Online and Lightweight Deep pre-ranking system)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值