本文分享的论文是《COLD: Towards the Next Generation of Pre-Ranking System》
论文下载地址为:https://arxiv.org/abs/2007.16122
1、背景
大多数的推荐系统都遵从一种多阶段的级联结构,最为我们所熟知的就是YoutubeDNN论文中所提出的Match + Rank的两阶段结构,但在阿里的场景下,又增加了Pre-Ranking和ReRanking阶段,如下图所示:
Reranking还是比较常见的阶段,比如加入一些策略打散提升推荐的多样性等。而Pre-Ranking确实是比较少见的。其模型大小/精度介于Matching和Ranking之间。不过我感觉不需要太过纠结于是哪个阶段,或者当作Matching阶段,主要学习的论文的思路就好。
Pre-Ranking阶段可以看作是Ranking阶段的简化版,其预估的候选集数量往往限制在千级别,耗时被限制在10-20毫秒。因此Pre-Ranking阶段的模型也需要轻量化模型来满足耗时的要求。
接下来,本文首先回顾一下Pre-Ranking系统的发展,以及面临的挑战,再介绍本文提出的计算成本感知的轻量级预排序系统COLD(Computing power cost-aware Online and Lightweight Deep pre-ranking system)