深度学习计算成本:cost = inf,RuntimeWarning: divide by zero encountered in log

"计算成本"
def compute_cost(AL, Y):
    m = Y.shape[1]
    logprobs = np.multiply(np.log(AL), Y) + np.multiply(np.log(1-AL), (1-Y))
    cost = (-1 / m) * np.sum(logprobs)
    cost = np.squeeze(cost)
    assert(cost.shape == ())

    return cost

#test compute_cost
print("==========test compute_cost==========")
AL, Y = testCases.compute_cost_test_case()
cost = compute_cost(AL, Y)
print("cost = " + str(cost))

这里出现以下错误:

==========test compute_cost==========
cost = inf
D:/wuenda/wnd_weekfour/wnd_week4.py:137: RuntimeWarning: divide by zero encountered in log
  logprobs = np.multiply(np.log(AL), Y) + np.multiply(np.log(1-AL), (1-Y))

问题原因:1-AL或AL可能会等于0,那么log(1-AL)和log(AL)会变得没有意义

解决办法:

在log(1-AL)和log(AL)的AL加上1e-3类似的数

logprobs = np.multiply(np.log(AL+1e-3), Y) + np.multiply(np.log(1-AL+1e-3), (1-Y))

此时output:

==========test compute_cost==========
cost = 2.0716269334614825

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值