拟牛顿法面面俱到(一)--牛顿插值法

本文介绍了插值的基本概念和常见方法,重点讲解了牛顿插值法的原理、推导过程及其优势。通过Python代码示例展示了牛顿插值法的实现,并指出其在泰勒公式推导中的应用。
摘要由CSDN通过智能技术生成

这次带来的是拟牛顿法系列,本系列的目标是完全理解拟牛顿法,包括其中涉及到的知识,比如泰勒公式、海森矩阵等,泰勒公式大家都很熟悉,不过它是怎么推导出来的呢?想必大家都不是很了解吧,这要从牛顿插值法说起,本节就先来讲解一下牛顿插值法。

本文大都参考自知乎:https://www.zhihu.com/question/22320408

1、什么是插值

什么叫插值?插值是数学领域数值分析中的通过已知的离散数据求未知数据的过程或方法。

相信大家对插值都不陌生,我们在数据挖掘进行缺失值处理时,有时是直接将数据丢弃,有时是用插值法填充一个数进去。

想想我们是怎么做的?有时候直接拿上一个数进行填充,有时候直接拿最后一个数进行填充,还有的时候,我们用前后两个数的平均值进行填充。使用最后一种方法时,我们其实就用到了一种简单的差值方法--线性插值法

除线性插值法外,还有许多常用的插值方法,我们将在下一节介绍。

2、常见的插值方法

2.1 线性插值法

这是最简单的插值方法,示意图如下:

这种近似太粗糙,我们只需要知道前后两个点的数据就可以进行插值,但实际的过程往往没有这么简单。

2.2 多项式插值

牛顿插值法也算是多项式插值中的一种,但我们将牛顿插值法单独拿出一节进行讲解。这里介绍另一种多项式插值方法,过程如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值