基于keras的神经网络特征图可视化

# coding: utf-8
import time

import cv2
import numpy as np
from PIL import Image

from yolact import YOLACT
from keras.models import Model
import cv2
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers import Activation
from pylab import *
from utils.utils import (get_classes, get_coco_label_map,
                         show_config)
from keras import backend as K
from nets.yolact import get_train_model, yolact





def get_row_col(num_pic):
    squr = num_pic ** 0.5
    row = round(squr)
    col = row + 1 if squr - row > 0 else row
    return row, col


def visualize_feature_map(img_batch):
    feature_map = np.squeeze(img_batch, axis=0)
    print(feature_map.shape)

    feature_map_combination = []
    plt.figure()

    # num_pic = feature_map.shape[2]# 标记2
    num_pic =10
    print('num_pic', num_pic)
    row, col = get_row_col(num_pic)

    for i in range(0, num_pic):
        feature_map_split = feature_map[:, :, i]  # 标记3
        feature_map_combination.append(feature_map_split)
        plt.subplot(row, col, i + 1)
        plt.imshow(feature_map_split)
        axis('off')
        title('feature_map_{}'.format(i))

    # plt.savefig('feature_map.png')
    plt.show()

    # 各个特征图按1:1 叠加
    feature_map_sum = sum(ele for ele in feature_map_combination)
    plt.imshow(feature_map_sum)
    # plt.savefig("feature_map_sum.png")




if __name__ == "__main__":

    img = cv2.imread('./img/0.jpg')
    input_shape = [544, 544]
    img=cv2.resize(img,(544,544))
    plt.imshow(img)
    classes_path = 'model_data/shape_classes.txt'
    class_names, num_classes = get_classes(classes_path)
    num_classes = num_classes + 1
    model_body = yolact([input_shape[0], input_shape[1], 3], num_classes, train_mode=True)
    model_body.summary()



    model = Model(inputs=model_body.input, outputs=model_body.get_layer(name="proto_net.proto2.2").output)  # 标记0

    print('img ', img.shape)
    img_batch = np.expand_dims(img, axis=0)
    print('img_batch', img_batch.shape)
    conv_img = model.predict(img_batch)  # conv_img 卷积结果
    print('conv_img.shape', conv_img.shape)

    visualize_feature_map(conv_img)

通过model.summary可以获得各个层的名字,通过名字进行索引。可以将每一层的特征图进行输出

在此由衷感谢,特此记录,有啥不懂的欢迎讨论(4条消息) keras如何可视化 模型预测时的 中间 特征图,网络模型如何可视化中间层特征图以及如何打印网络结构_EvaJason的博客-CSDN博客

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰虺

万水千山总是情,给点打赏行不行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值