主码流与子码流 主码流与子码流是为了解决在网络情况不好时为了满足远程预览的流畅性降低码率,而不影响本地录像提出的双码流技术,即一路视频进入NVR后,NVR可以编码提供两种码流,主码流和子码流,主码流分辨率高于子码流,主码流用来录像,子码流用来网传。 这就叫双码流技术。目的是用于解决监控录像的本地存储和网络传输的图像的质量问题。 双码流能实现本地和远程传输的两种不同的带宽码流需求,本地传输可以用主码流,能获得更清晰的存储录像,远程传输就因为带宽限制的原因,而使用子码流来获得流畅的图像和录像...
天然气/化学污染物泄漏定量分析模型解读 天然气化学污染物事故发生后,会因事故处理不当以及应急方案不完善导致事故进一步扩大,造成巨大的人员伤亡与国家财产损失。本文给污染物事故发生后的救援及应急方案制定提供参考。1.天然气扩散模型高斯模型是目前较为广泛采用的气体扩散模型,其基于统计理论的正态分布假设来推算气体的扩散模式,分为高斯烟羽模型和高斯烟团模型。1.1.1 高斯烟羽模型若管道泄漏口为小孔,可认为泄漏为连续泄漏源,采用高斯烟羽模型模拟计算该泄漏气体的浓度分布,其表达式...
全自动化光学检测现状研究 近年来,随着全球科学技术的迅速发展,全世界液晶显示及相关产业发展规模日益增大,TFT-LCD及其相关产业的市场与生产制造商产业也随之不断地增加。最初,TFT-LCD技术以日本技术为世界主导,随后,韩国与中国台湾也随之逐渐的发展起来,并且这些年来每年的增速成倍上升,而TFT-LCD以低成本、出众的体积优势、高解析度以及高亮度等优势逐步占据显示器的主导地位,普遍用于智能手机,台式与笔记本电脑、多媒体会议终端显示屏、智能手表、车载多媒体终端和家用智能电视等生活与办公领域。...
伪彩色、真彩色和直接色区别与联系 伪彩色处理将彩色图像转换为灰度图像是一个不可逆的过程,灰度图像也不可能变换为原来的彩色图像。而某些场合需要将灰度图像转变为彩色图像;伪彩色处理主要是把黑白的灰度图像或者多波段图像转换为彩色图像的技术过程。其目的是提高图像内容的可辨识度。其中方法有,灰度分成法,灰度变换法。真彩色(true color)真彩色是指在组成一幅彩色图像的每个像素值中,有R,G,B三个基色分量,每个基色分量直接决定显示设备的基色强度,这样产生的彩色称为真彩色。例如用RGB 5∶5∶5表示的彩色图像,R,G,B各用5位,用
python正则表达式 一、简介正则表达式本身是一种小型的、高度专业化的编程语言,而在python中,通过内嵌集成re模块,程序媛们可以直接调用来实现正则匹配。正则表达式模式被编译成一系列的字节码,然后由用C编写的匹配引擎执行。二 、正则表达式中常用的字符含义1、普通字符和11个元字符:这里需要强调一下反斜杠\的作用:•反斜杠后边跟元字符去除特殊功能;(即将特殊字符转义成普通字符)•反斜杠后边跟普通字符实现特殊功能;(即预定义字符)•引用序号对应的字组所匹配的字符串。a=...
python中的正则表达式(re模块) 一、简介正则表达式本身是一种小型的、高度专业化的编程语言,而在python中,通过内嵌集成re模块,程序媛们可以直接调用来实现正则匹配。正则表达式模式被编译成一系列的字节码,然后由用C编写的匹配引擎执行。二 、正则表达式中常用的字符含义1、普通字符和11个元字符:这里需要强调一下反斜杠\的作用:•反斜杠后边跟元字符去除特殊功能;(即将特殊字符转义成普通字符)•反斜杠后边跟普通字符实现特殊功能;(即预定义字符)•引用序号对应的字组所匹配的字符串。a=re...
Imagenet数据集1000类别中英文 英文{0: 'tench, Tinca tinca', 1: 'goldfish, Carassius auratus', 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias', 3: 'tiger shark, Galeocerdo cuvieri', 4: 'hammerhead, hammerhead shark', 5: 'electric ray, cram.
PyTorch中的contiguous解读 本文讲解了pytorch中contiguous的含义、定义、实现,以及contiguous存在的原因,非contiguous时的解决办法。并对比了numpy中的contiguous。contiguous 本身是形容词,表示连续的,关于 contiguous,PyTorch 提供了is_contiguous、contiguous(形容词动用)两个方法 ,分别用于判定Tensor是否是 contiguous 的,以及保证Tensor是contiguous的。PyTorch中的is_contiguous是
Python super细节整理 算法最终需要封装成接口或服务供生产环境使用,这离不开面向对象编程,python中的单继承、多继承是如何实现的呢?super类不可或缺。声明版本:声明一下本文所使用的 Python 版本。默认用的是 Python 3,也就是说:本文所定义的类都是新式类。如果你用到是 Python 2 的话,记得继承 object:# 默认, Python 3class A: pass# Python 2class A(object): passPython 3 和 Python
数字化项目管理:一种轻量级的持续交付方案 如何快速向用户交付可靠的产品, 是近年来持续交付研究和应用的热点问题, 传统的软件敏捷方法在交付过程中缺乏团队协作和标准化的构建流程, 大公司 DevOps 框架因体系复杂在中小规模企业应用时会产生迭代速度和产品质量相互制约的矛盾, 基于 DevOps 轻量级的持续交付框架, 在角色叠加、迭代频繁的项目场景中, 以脚本形式自动实现项目代码获取、测试、构建和部署, 完成项目持续交付. 通过行业调查、企业实践验证方案不仅可以缩短项目周期、提高交付质量, 还能够实现交付过程可视化, 促进软件质量不断改进..
图像去雾算法总结 在雾天环境下,空气中的悬浮颗粒与光线之间发生相互作用,使得采集到的图像具有明显的退化现象,包括色彩饱和度低、边缘模糊等问题。含雾图像也会影响后续的图像分析和理解等任务。为了降低雾给室外成像系统带来的影响,图像去雾在计算机视觉等领域得到了广泛的重视。根据处理方式的不同,图像去雾可以大致分为图像增强和图像复原两大类方法。其中,图像增强是通过调节灰度等级改善对比度,以达到去雾效果。显然,它并没有考虑到含雾图像降质的本质,去雾的效果并不理想。图像复原的方法利用大气散射模型实现去雾,利用了造成含雾图像退化的物理原
DFS 图遍历路径优化分析 深度优先搜索是图的遍历的一种重要方法,在一些网络拓补结构、DNA 网络等复杂图形分析中有很广泛的应用。传统的深度优先搜索,从某一节点开始,依次遍历此节点所有相邻且未被访问的节点,其下一跳节点的选择往往不是最优的。文章通过对当前节点所有未被访问的下一跳节点计算其到所有未访问节点路径总和,选择最优的一个节点作为下一跳节点,使得深度优先搜索在图的遍历过程中总的搜索路径大大减少。深度优先搜索算法对图的遍历分析图的遍历是指从图的某个节点开始,沿着某条路径对图中所有节点依次访问。解决图的遍历问题,目前主要.
(原)python中matplotlib的颜色及线条控制 (原)python中matplotlib的颜色及线条控制https://www.cnblogs.com/darkknightzh/p/6117528.html转载于:(原)python中matplotlib的颜色及线条控制 - darkknightzh - 博客园参考网址:python - Named colors in matplotlib - Stack Overflowpython - Set markers for individual points on a line in M
opencv查找/画轮廓 c++实现 #include "opencv2/imgproc/imgproc.hpp"#include "opencv2/highgui/highgui.hpp"#include <math.h>#include <iostream>using namespace cv;using namespace std;static void help(){ cout << "This program illustrates the use of find.
数据集VOC/CIFAR10/CATDOG 目标检测:PASCAL VOC 数据集简介_Man-CSDN博客_voc数据集【猫狗数据集】pytorch训练猫狗数据集之创建数据集 - 西西嘛呦 - 博客园CIFAR10/CIFAR100数据集介绍 - WUST许志伟 - 博客园
pytorch张量索引 tens = tensor([[ 101, 146, 1176, 21806, 1116, 1105, 18621, 119, 102, 0, 0, 0, 0], [ 101, 1192, 1132, 1136, 1184, 146, 1354, 1128, 1127, 117, 1463, 119, 102], [ 101, 6816, 1905.
python 中 numpy 模块的 size,shape, len的用法 numpy 中有很多类方法可以对数组处理,下面将介绍三种常见的处理数组的方法.1.size的用法import numpy as npX=np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) number=X.size # 计算 X 中所有元素的个数X_row=np.size(X,0) #计算 X 的行数X_col=np.size(X,1) #计算 X 的列数 print("num
python计算坐标点欧式距离_计算Python Numpy向量之间的欧氏距离实例 计算Python Numpy向量之间的欧氏距离,已知vec1和vec2是两个Numpy向量,欧氏距离计算如下:import numpydist = numpy.sqrt(numpy.sum(numpy.square(vec1 - vec2)))或者直接:dist = numpy.linalg.norm(vec1 - vec2)# 补充知识:Python中计算两个数据点之间的欧式距离,一个点到数据集中其他点的距离之和# 如下所示:# 计算数两个数据点之间的欧式距离import n
Python-OpenCV中的resize() Python-OpenCV中的resize()函数改变图像大小意味着改变尺寸,无论是单独的高或宽,还是两者。也可以按比例调整图像大小。这里将介绍resize()函数的语法及实例。语法函数原型cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])参数:参数 描述 src 【必需】原图像 dsize 【必需】输出图像所需大小 fx 【可选】沿水平轴的比例因子 fy 【可选】.
目标检测(降低误检测率及小目标检测系列笔记) 深度学习中,为了提高模型的精度和泛化能力,往往着眼于两个方面:(1)使用更多的数据(2)使用更深更复杂的网络。**一、什么是负样本**负样本是指不包含任务所要识别的目标的图像,也叫负图像(Negtive Image)。以识别限速牌为例,如下所示,左图包含限速牌,为正样本,右图不包含限速牌,为背景图,即负样本。正样本负样本2.为什么要训练负样本训练负样本的目的是为了降低误检测率、误识别率,提高网络模型的泛化能力。通俗地讲就是告诉检测器,这些“不是你要检测的目标”。3.F