具体实现截图
项目技术介绍
通过Python来满足相关诉求;系统主要采用前后端分离、MVC模式进行开发,前端使用HTML、Css、Javascript、Vue等技术完成开发,后端使用Mysql数据库等技术开发,项目完成后,将系统给用户体验,定期对用户体验进行回访调查,不断的优化修改系统的相关功能。
开发语言:Python
框架:flask和django
Python版本:python3.7+
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat
使用Navicat或者其它工具,在mysql中创建对应名称的数据库,并导入项目的sql文件;
使用PyCharm 导入项目,修改配置,运行项目;
将项目中config.ini配置文件中的数据库配置改为自己的配置,然后运行;
运行成功后自动弹射
(Django Flask Vue Pycharm毕业设计项目 )
研究方法:
1.文献分析法:在研究过程中通过图书馆数据库,和中国知网下载资料等方式搜集查阅和整理文献并通过对文献的研究形成图书馆用户行为分析情况和现所存在的问题。
2.综合研究法:需要对理论实际情况相结合进行全方面,多角度的综合分析,探索图书馆用户画像现状。
3.调查分析法:通过走访调查校内图书馆用户对图书馆的满意度,了解事物详细资料数据,并加以分析展开研究。
4.案例研究法:参考其他已完成的可视化项目或可视化平台,找到该项目或平台的关键点。掌握完成过程中的流程和问题。
开发技术详细介绍
从技术层面看,Python 语言凭借其简洁语法、丰富库,能高效处理家庭财务数据运算与逻辑实现。Django和flask 框架基于 Python,在后端开发中,其数据库抽象层可便捷对接 MySQL 数据库存储本系统信息,强大路由和安全机制保障系统稳定运行。Vue 技术用于前端构建,以组件化开发打造便捷交互界面,响应式数据绑定让收支数据实时更新展示。MySQL 数据库具备高性能存储与查询能力,多种存储引擎适配不同财务数据读写场景。这些技术成熟且相互适配,为开发功能完备的本系统提供有力支撑。
Echarts可视化框架技术
Echarts有着与众不同的特点和惊艳全场的视觉效果,Echarts有以下几种特点:
1、开源软件,并且提供了非常炫酷的图形界面,还有各种直观的数据分析图形
2、使用简单,软件本身已经封装了js,只要引用到位就会有得到完美展示
3、兼容性好,基于html5,有着良好的动画渲染效果。
4、多种数据格式无需转换直接使用,对与直接传入包括二维表,key-value表等多种格式的数据源,通过简单的设置encode属性就可以完成从数据到图形的映射,这使Mysql的数据更容易的被引用。
Django 的设计理念强调简洁、高效和可维护性,其自带的数据库抽象层,允许开发者使用 Python 代码与多种数据库进行交互,如常见的 MySQL、PostgreSQL 等,无需编写复杂的 SQL 语句,大大提高了数据库操作的便捷性。
Vue 是一款用于构建用户界面的渐进式 JavaScript 框架,它以其轻量级、易用性和灵活性在前端开发领域独树一帜。Vue 采用组件化的开发模式,开发者可以将一个复杂的页面拆分成多个可复用的组件,每个组件都有自己独立的 HTML、CSS 和 JavaScript 代码,这种封装性极大地提高了代码的可维护性和复用性。
MySQL 支持标准的 SQL 语言,使得开发者能够方便地进行数据的查询、插入、更新和删除操作。它具备强大的存储引擎,如 InnoDB 和 MyISAM,不同的存储引擎针对不同的应用场景进行了优化,InnoDB 支持事务处理、行级锁等特性,适用于对数据一致性要求较高的场景,如电商订单处理;MyISAM 则在读取性能上表现出色,适合以读操作居多的应用。
Flask是Python中一个轻量级的Web应用框架,以其简洁、扩展性强而备受开发者青睐。它不像Django那样大而全,而是提供了基本的路由、模板渲染等功能,允许开发者根据需求灵活添加组件。
在Flask中,开发者可以更加容易地定义路由,即URL到Python函数的映射,实现Web页面的动态生成。同时,Flask集成了Jinja2模板引擎,方便开发者进行前端页面的渲染[10]。
核心代码部分展示
from flask import Flask, render_template, redirect, url_for
from database import db, User # 导入db和User模型
@app.route('/')
def index():
users = User.query.all() # 执行查询获取所有顾客数据
return render_template('index.html', users=users) # 渲染模板并将顾客数据传递给模板
from flask_sqlalchemy import SQLAlchemy
db = SQLAlchemy()
def create_app():
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+mysqlconnector://username:password@localhost/dbname'
db.init_app(app)
return app
进度安排
随着信息时代的发展与进步,各种平台的搜索引擎数据呈爆炸式增长,我们在平台上通过使用搜索引擎和关键字来得到自己想要的结果,但同时,因为搜索数据呈爆炸式增长的原因,我们难以去找到自己最心仪的那个结果,这使得用户的在搜索时花费的时间变得更长。
在完成开题报告和答辩后,准备论文初稿,下学期开学前完成初稿并交给指导老师审阅,听取指导老师给与的建议,之后继续完善论文内容,编写初稿,待论文中期检查,基本完成论文整体内容,最后进行定稿,完成毕业论文。由指导教师评审,评阅人评审,于此期间准备毕业设计答辩内容,对所研究内容进一步整理,做好PPT,为开题答辩做准备。
网络爬虫方面
1、通用网络爬虫(General Purpose Web Crawler):通用网络爬虫所爬取的的目标资源在全互联网中,所爬取的目标数据巨大,对于爬取的机器性能要求非常高。简单概述,通用网络爬虫是将整个网页的内容全部爬取下来,并保存在文件中,这样并不能直接获取到我们想要的数据。同时,通用网络爬虫对于机器的要求非常高,一般只适用于大型搜索引擎之中,所以我们对通用网络爬虫不作单一考虑。
2、聚焦网络爬虫(Focused Crawer):聚焦网络爬虫是将爬取目标定位在与主题相关的页面中,与通用网络爬虫不同,聚焦网络爬虫是将网页中我们想要的特定数据进行爬取并保存到本地文件中。相对比之下,聚焦网络爬虫比较复杂,但实用性高,可将我们需要的数据进行爬取,不需要像通用网络爬虫一样进行大规模筛选,更加省时省力。也正因为硬件和精力的限制,我们此次的爬虫将选择两种爬虫进行结合使用。
网络爬虫是依靠预先设定好的规则而进行自动的抓取网络信息的过程 。网络爬虫通过解析网页,自动获取网页的数据。相较于人工去获取网页数据,无疑是要方便许多。本文使用 Python 的 Requests 库和 Beautifulsoup 库去解析链家网页,获取数据。同样是网络爬虫的一种。当然,网络爬虫也是有缺点的,它在对网页进行爬取时,可能会触发网页的反爬机制,从而导致失败。所以在编写爬虫程序的时候就要想办法绕过反爬机制,增加了工作量。而且网络爬虫必须要遵守相关法律法 规,不能够恶意的去爬取一些网站的信息。
Scrapy是一个Python编写的强大,灵活的网络爬虫框架和数据提取工具。它使用异步I/O网络库Twisted进行高效的爬取,并将提取到的数据存储到多种格式中。然而,在需要大规模爬取复杂的网站时,单机爬虫速度会受到限制。为了解决这个问题,Scrapy提供了分布式爬虫系统
源码获取详细视频演示:文章底部获取博主联系方式!!!!
需要成品,加我们的时候,记得把本页面标题截图发下我,方便查找相应的源代码和演示视频。
如果你对本设计介绍不满意 文章最下方名片联系我即可~本系统包修改时间和标题,包安装部署运行调试,就是在你的电脑上运行起来