目录
技术栈和环境说明
结合用户的使用需求,本系统采用运用较为广泛的Python语言,DJANGO框架,vue语言等关键技术,并在pycharm开发平台上设计与研发本系统。同时,使用MySQL数据库,设计实体-联系图和数据表格,用于更好的存储和管理数据信息的数据仓库。通过使用关键技术研发本系统,并根据需求分析得出用户的主要需求,设计与实现本系统的功能模块。再通过系统测试,主要是功能测试,对系统进行纠错和改进,完善系统的不足之处,使得最后设计出的系统更能够符合使用者的需求。
小程序端运行软件 微信开发者工具/hbuiderx
uni-app框架:使用Vue.js开发跨平台应用的前端框架,编写一套代码,可编译到Android、小程序等平台。
开发语言:Python
框架:flask/django的都有
Python版本:python3.7.7
数据库:mysql
数据库工具:Navicat
开发软件:PyCharm
浏览器:谷歌浏览器
具体实现截图
开发者工具介绍
HBuilder 是基于HTML、js、css的等H5语法的开发技术,使得开发者很容易上手学习,里面涉及的数据绑定基于Vue语法涉及,在开发效率上也比传统的jquery快,当然HBuilder 也保留了对jquery的支持,两种语法可以结合项目的需要,可以混合开发。该开发工具本身是由java编写完成,所以对原生项目的插件也有很好的兼容性。
微信开发者工具是由腾讯官方专门为微信小程序量身打造的开发者工具,它不仅轻巧、方便,主要是的对于电脑要求不是很高,所以在一般的电脑上都可以完成相应的开发,在系统调试测试过程中,也不要下载第三方插件,就可以完成系统测试环节,通过制定好的debug调试器就可以完成。
如今微信小程序有以下发展优势
(1) 无须下载,无须注册
(2) 触手可及,用完即走
(3) 功能丰富,使用难度低
(4) 流量之王,用户群体大
技术路线
本系统的开发与设计是基于vue为前端页面核心框架为django/flask,技术方面主要采用了Html、Js、CSS3、python、Mysql。
本课题使用Python语言进行开发。代码层面的操作主要在PyCharm中进行,将系统所使用到的表以及数据存储到MySQL数据库中,方便对数据进行操作本课题基于WEB的开发平台
②前端开发选择:Vue。
②后端开发选择:python、django/flask。
③数据库选择:MySQL。
④开发工具选择:pycharm、Navicat for MySQL。
解决的思路
前端的数据收集及可视化研究,熟悉Django框架,python编程设计语法。
解决的问题是如何更好的设计一个简易而方便操作前端的页面,解决数据间的关系,调整数据表的结构
该系统采用面向对象的程序设计方法,该方法是一种基于结构分析的以数据为中心的程序设计方法,其主要思想是将数据及处理这些数据的操作都封装在一个叫做类的数据结构里。这种方法描述的现实世界模型贴切、合理,更符合人们认识世界的思维方法。
性能/安全/负载方面
在设计系统时,充分考虑到当前系统可能存在的最高并发数量,并由此选择对应的硬件服务器和对应的宽带容量,上传下载的速率等问题。对于系统的查询速度已经控制在两秒之内。同时考虑当遇到高并发时是否会影响查询时间。
安全性需求,对于所有的管理系统来说,数据安全都是非常重要的,要严格控制其数据的安全性,防止外泄和被不法分子盗取。所以,系统应该设置不同的操作权限,并加强数据库的加密管理和访问控制,并定期对数据进行维护,及时进行数据备份。
开发语言以及框架介绍
Python的扩展性也很好,其可以利用c语言编写模块,编译链接到解释器,从而使Python能够调用该c模块中的接口。反之,C语言也能将Python解释器连接到C中,从而在C中调用Python。
因此Python 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言,其设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有比其他语言更有特色语法结构。
Flask是目前十分流行的web框架,采用Python编程语言来实现相关功能。它被称为微框架(microframework),“微”并不是意味着把整个Web应用放入到一个Python文件,微框架中的“微”是指Flask旨在保持代码简洁且易于扩展,Flask框架的主要特征是核心构成比较简单,但具有很强的扩展性和兼容性,程序员可以使用Python语言快速实现一个网站或Web服务。一般情况下,它不会指定数据库和模板引擎等对象,用户可以根据需要自己选择各种数据库。
Django也是一个MVC框架。但是在Django中,控制器接受用户输入的部分由框架自行处理,所以 Django 里更关注的是模型(Model)、模板(Template)和视图(Views),称为 MTV模式:
M 代表模型(Model),即数据存取层。 该层处理与数据相关的所有事务: 如何存取、如何验证有效性、包含哪些行为以及数据之间的关系等。
T代表模板(Template),即表现层。 该层处理与表现相关的决定: 如何在页面或其他类型文档中进行显示。
V 代表视图(View),即业务逻辑层。 该层包含存取模型及调取恰当模板的相关逻辑。 你可以把它看作模型与模板之间的桥梁。
数据库设计
在数据库设计阶段包括了六个步骤,需求分析、概念设计、逻辑设计、物理设计、数据库实施、数据库运行维护。前期分析阶段,先对需求分析进行整理,然后进行概念设计和逻辑结构设计得出数据模型,进而进行物理结构设计,评估性能预测结果。根据设计阶段的结果进行数据库实施,通过数据库创建脚本完成数据库的实施,最后进行维护和使用。
python-flask核心代码部分展示
import os
from flask import Blueprint
from utils.py_file_check import pyFileCheck
main_bp = Blueprint('main', __name__, static_folder='static')
import_str = 'from . import '
view_tuple = set()
exclude_list = [
# "common.py",
"__init__.py"
]
dir = os.path.join(os.getcwd(), "api/main")
dir = dir.replace("unit_test/", '') if "unit_test/" in dir else dir
for i in os.listdir(dir):
if i not in exclude_list and pyFileCheck(i) == True:
current = i.split(".", 1)[0]
view_tuple.add(current)
import_str += ','.join(view_tuple)
print(import_str)
exec(import_str)
python-django核心代码部分展示
# coding:utf-8
__author__ = "ila"
from django.http import JsonResponse
from .users_model import users
from util.codes import *
from util.auth import Auth
import util.message as mes
def users_login(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
if req_dict.get('role')!=None:
del req_dict['role']
datas = users.getbyparams(users, users, req_dict)
if not datas:
msg['code'] = password_error_code
msg['msg'] = mes.password_error_code
return JsonResponse(msg)
req_dict['id'] = datas[0].get('id')
return Auth.authenticate(Auth, users, req_dict)
def users_register(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
error = users.createbyreq(users, users, req_dict)
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
详细视频演示
请联系我获取更详细的演示视频
源码获取
需要成品,加我们的时候,记得把本页面标题截图发下我,方便查找相应的源代码。可以的话 顺便点赞!
文章最下方名片联系我即可~