python乐园
Abo_luo
竹杖芒鞋轻胜马,一蓑烟雨任平生
展开
-
神经网络特征层可视化pytorch
python可视化三维矩阵点程序结果总结Github链接:https://github.com/JonnesLin/Evison程序使用Evision工具可视化pytorch模型的网络特征图from Evison import Display, show_networkfrom torchvision import modelsfrom PIL import Image# 构建一个模型network = models.mobilenet_v2(pretrained=True)#原创 2021-12-28 16:27:21 · 2474 阅读 · 4 评论 -
python可视化三维矩阵点
python可视化三维矩阵点程序总结仅仅提供学习使用程序根据三维坐标可视化,每个坐标对应的数值import matplotlib.pyplot as pltimport numpy as npfrom mpl_toolkits.mplot3d import Axes3Dfrom matplotlib.animation import FuncAnimationx = np.arange(0,10,0.5)y = np.arange(0,10,0.5)z = np.arange(0原创 2021-12-17 13:46:30 · 3878 阅读 · 0 评论 -
51job_selenium爬虫
51job爬虫程序总结仅仅提供学习使用程序仅仅提供学习使用import requestsfrom lxml import etreefrom bs4 import BeautifulSoupimport jsonfrom selenium.webdriver.chrome.options import Options #实现五可视化from selenium.webdriver import ChromeOptions #实现规避被检测到的风险from time im原创 2021-11-30 15:15:49 · 827 阅读 · 0 评论 -
华为数学建模2021 D题
华为数学建模D题第一题:选取感兴趣的20个变量第二题建立回归模型第三题 建立五个因变量(ADMET)的分类模型第四题 每个变量对活性的定量分析总结引用大致分享一下自己在建模过程中的思路,仅仅是做个记录第一题:选取感兴趣的20个变量对于729个属性变量建立回归和分类模型而言显得相对有点多,因此需要维度压缩,通常在使用维度压缩时有很多方法如:PCA、DAN(深度自编码)等,但是这样得到的维度压缩不会对应到相应的原有属性,类似于特征映射而非筛选。因此第一题采取的思路是选用XGBoost和Random原创 2021-10-20 10:06:08 · 1561 阅读 · 2 评论 -
self-train RandomForesrClassifier
半监督随机森林分类感受野绘制总结随便玩一下啊感受野绘制写论文的需要就随便写了个小玩意,后面再继续更新import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.ensemble import RandomForestRegressorfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.model_selec原创 2021-10-13 09:07:59 · 139 阅读 · 0 评论