1008 数组元素循环右移问题 (20)(20 分)

1008 数组元素循环右移问题 (20)(20 分)

一个数组A中存有N(N&gt0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(M>=0)个位置,即将A中的数据由(A~0~ A~1~……A~N-1~)变换为(A~N-M~ …… A~N-1~ A~0~ A~1~……A~N-M-1~)(最后M个数循环移至最前面的M个位置)。如果需要考虑程序移动数据的次数尽量少,要如何设计移动的方法?

输入格式:每个输入包含一个测试用例,第1行输入N ( 1<=N<=100)、M(M>=0);第2行输入N个整数,之间用空格分隔。

输出格式:在一行中输出循环右移M位以后的整数序列,之间用空格分隔,序列结尾不能有多余空格。

输入样例:

6 2
1 2 3 4 5 6

输出样例:

5 6 1 2 3 4
#include <iostream>
#include <algorithm>

using namespace std ; 

#define maxn 105
int n , m ; 
int num[maxn] ; 

int main(){
    int n , m ; 
    cin >> n >> m ; 
    for(int i=0 ; i<n ; i++){
        cin >> num[(i+m)%n] ;
    }

    for(int i=0 ; i<n ; i++){
        if(i == 0){
            cout << num[i] ; 
        }else {
            cout << " " << num[i] ; 
        }
    }
    cout << endl ; 
}

 

转载于:https://www.cnblogs.com/yi-ye-zhi-qiu/p/9107821.html

### 回答1: 题目描述 给定一个长度不超过 100 的正整数序列,要求对这个序列进行循环右移操作。即将序列的最后一个元素移到第一个位置,其他元素依次向后移动一个位置。例如,将序列 {1, 2, 3, 4, 5} 循环右移一次得到序列 {5, 1, 2, 3, 4}。 输入格式 输入第一行给出正整数 N(≤100)和正整数 M(≤N),别为序列长度和循环右移的次数。第二行给出 N 个正整数,即待循环移的序列,每个数不超过 100。 输出格式 在一行输出循环右移 M 次后的整数序列,每个数之间用空格隔开,序列结尾不能有多余空格。 输入样例 5 2 1 2 3 4 5 输出样例 4 5 1 2 3 思路析 将数组的后 M 个元素移到数组的前面,再将前面的元素移到数组的后面。 代码实现 ### 回答2: 这道题目要求将给定数组循环右移k次,也就是将数组的最后k个元素移到数组的前k个位置。我们可以使用反转数组的方式来解决这个问题,具体步骤如下: 1. 首先将整个数组反转; 2. 将前k个元素反转; 3. 将剩余的n-k个元素反转。 这样操作之后,数组就完成了k次右移的操作。 为什么这种做法是正确的呢?我们可以根据下图来析: 假设数组为[1, 2, 3, 4, 5, 6, 7],我们要将其循环右移3次。 1. 我们首先将整个数组反转,得到[7, 6, 5, 4, 3, 2, 1]; 2. 然后将前3个元素反转,得到[5, 6, 7, 4, 3, 2, 1]; 3. 最后将剩余的4个元素反转,得到[5, 6, 7, 1, 2, 3, 4]。 可以发现,这个结果就是原数组右移3位之后的结果。原来的[1, 2, 3, 4, 5, 6, 7]的最后3个元素[5, 6, 7]移动到了最前面,而原来的前4个元素[1, 2, 3, 4]被移动到了数组的最后面。这就是我们想要的结果。 总的来说,这个算法的时间复杂度是O(n),空间复杂度是O(1),非常高效。因此,相比于暴力法,使用反转数组的方式是一个更好的解决方案。 ### 回答3: 问题描述 给定一个长度为 $N$ 的整型数组 $A$,要求把 $A$ 的元素循环右移 $M$ 个位置。即将 $A$ 的元素从后往前依次取出放在数组最前面,直到所有元素都被移位为止。 解决方法 解决这个问题的方法有很多种,下面列举其两种方法。 方法一:暴力枚举 最简单直接的方法就是按照题意模拟,将数组 $A$ 的元素循环右移 $M$ 个位置。具体实现思路如下: - 给定数组 $A$ 和循环右移的次数 $M$; - 循环 $M$ 次,每次循环将数组 $A$ 的最后一个元素放在数组的第一个位置;然后将数组 $A$ 的所有元素向后移动一位(除了第一个元素); - 循环结束后,数组 $A$ 就被循环右移了 $M$ 个位置。 这种方法的时间复杂度是 $O(NM)$,如果 $N$ 和 $M$ 均较大时,运行效率较低。 方法二:三次翻转 通过数组循环右移的本质,可以发现循环右移实际上是对数组的三段子序列翻转(参考反转字符串题目)。具体实现思路如下: - 给定数组 $A$ 和循环右移的次数 $M$; - 将数组 $A$ 的前 $N-M$ 个元素翻转; - 将数组 $A$ 的后 $M$ 个元素翻转; - 最后将整个数组 $A$ 翻转,得到循环右移 $M$ 个位置后的结果。 这种方法的时间复杂度是 $O(N)$,因此是一种更优秀的解决方法。 代码示例 下面给出方法二的代码示例: void reverse(int* nums, int start, int end) { while(start < end) { int temp = nums[start]; nums[start] = nums[end]; nums[end] = temp; start++; end--; } } void rotate(int* nums, int numsSize, int k) { k = k % numsSize; reverse(nums, 0, numsSize - k - 1); reverse(nums, numsSize - k, numsSize - 1); reverse(nums, 0, numsSize - 1); } 这段代码,reverse 函数用于将 nums 数组下标从 start 到 end 的元素翻转;rotate 函数用于将 nums 数组的元素循环右移 k 个位置。此外,k 可能比数组的长度大,所以需要先对 k 取模。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值