基础算法-搜索与回溯:图的m着色问题

问题描述
 给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色。

如果有一种着色法使图G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。

图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。

你的任务是对于给定的无向连通图G和m种不同的颜色,编写一个JAVA程序来计算无向图G的所有不同着色法。

输入数据格式为:

第一行输入无向图的顶点数 v ,边数 e 和可用的颜色数 cm

第二行开始至第 e 行输入两个顶点连接的边(u,v),u和v输入时以空格区分。

【样例输入】

5 8 4
1 2
1 3
1 4
2 3
2 4
2 5
3 4
4 5

【样例输出】

48

【代码】

#include<bits/stdc++.h>
using namespace std;
int n,k,m;
int sum=0;
int a[101][101];//1表示未确定颜色 
int b[101];//每个顶点的颜色 
bool check(int s) {
	for(int i=1; i<s; i++)
		if(a[i][s]==1&&b[i]==b[s])//是否有重色 
			return false; 
	return true;
}
void dfs(int s) {//第几个 
	if(s==n+1) {
		sum++;
		return;
	}
	for(int i=1; i<=m; i++) {//涂什么颜色 
		b[s]=i;
		if(check(s)==true)
			dfs(s+1);
		b[s]=0;
	}
}
int main() {
	cin>>n>>k>>m;
	for(int i=1; i<=k; i++) {
		int x,y;
		scanf("%d%d",&x,&y);
		a[x][y]=a[y][x]=1;
	}
	dfs(1);
	cout<<sum;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值