详解卷积中常见参数及用法(stride、kernel_size、padding、dilation)

本文探讨了在深度学习中遇到的困惑——步长(stride)与空洞卷积(dilation)的区别,解释了它们的作用并提供了计算公式。作者推荐了一个可视化工具帮助初学者理解这些参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近看自己方向的论文,发现有的时候还是分不清一些参数的用法和含义,比如今天就在stride和dilation之间思考了很久,知识确实是学杂了,为了加深印象决定记录下来。

1.stride(步长)

就是卷积核每一个移动的长度,很好理解,这里放上动图
在这里插入图片描述
这个卷积核和图片都要大一点

2.dilation (空洞卷积)

扩展率,这里主要采用了空洞卷积,有一种好处就是增大了感受域(receptive field)
在这里插入图片描述
上图的dilation等于2,表示两个卷积核之间的距离。

经过卷积操作后输出的宽和高可以按照下面的公式计算:
在这里插入图片描述

附:

在这里推荐一个可以可视化卷积参数的网站,很直观,适合初学者。
https://ezyang.github.io/convolution-visualizer/index.html
可以自己定义参数值,非常好用:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值