
YOLOV8基础解析+创新改进+实战案例

文章平均质量分 96
YOLOV8基础解析+创新改进+实战案例: 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
YOLO大师
这个作者很懒,什么都没留下…
展开
-
万字详解YOLOv8网络结构Backbone/neck/head以及Conv、Bottleneck、C2f、SPPF、Detect等模块
YOLOv8是由Ultralytics开发的最先进的目标检测模型,推升了速度、准确性和用户友好性的界限。YOLO这一缩写代表“你只看一次”(You Only Look Once),通过在一次网络传递中同时预测所有边界框,提升了算法的效率和实时处理能力。相比之下,其他一些目标检测技术需要经过多个阶段或过程来完成检测。YOLOv8在流行的YOLOv5架构上进行了扩展,在多个方面提供了改进。原创 2024-05-26 23:25:57 · 75274 阅读 · 11 评论 -
手把手教你搭建YOLOV8+CUDA环境,训练自定义数据集,训练推理验证导出。小白也能看得懂的!
YOLO(You Only Look Once)系列算法因其高效、准确等特点而备受瞩目。由2023年Ultralytics公司发布了YOLO的最新版本YOLOv8是结合前几代YOLO的基础上的一个融合改进版。本文主要介绍YOLOv8环境搭建/数据集获取/训练/推理/验证/导出/部署原创 2024-05-18 18:56:00 · 16640 阅读 · 8 评论 -
YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
大家好!欢迎阅读本专栏。本专栏涵盖了YOLO8中C2f、主干网络、检测头、注意力机制、Neck等多种结构的创新,同时也包括了 YOLO相关的基础知识以及相关项目。原创 2024-05-06 10:20:34 · 32952 阅读 · 0 评论 -
【YOLOv8改进 - C2f融合】C2f融合SHViTBlock:保证计算效率的同时,能够有效地捕捉图像的局部和全局特征
【YOLOv8改进 - C2f融合】C2f融合SHViTBlock:保证计算效率的同时,能够有效地捕捉图像的局部和全局特征原创 2025-04-22 22:29:18 · 104 阅读 · 0 评论 -
【YOLOv8改进- Backbone主干】CVPR2025 MambaOut :为图像分类任务设计的轻量级模型,曼巴永存!
【YOLOv8改进- Backbone主干】CVPR2025 MambaOut :为图像分类任务设计的轻量级模型,曼巴永存!原创 2025-04-16 22:55:17 · 170 阅读 · 0 评论 -
【YOLOv8改进 - 卷积Conv】PConv(Pinwheel-shaped Conv): 风车状卷积用于红外小目标检测, 复现!
【YOLOv8改进 - 卷积Conv】PConv(Pinwheel-shaped Conv): 风车状卷积用于红外小目标检测, 复现!原创 2025-04-15 22:55:33 · 106 阅读 · 0 评论 -
【YOLOv8改进 - 特征融合】EFC: 基于增强层间特征关联的轻量级即插即用融合策略,即插即用适,用于小目标检测
【YOLOv8改进 - 特征融合】EFC: 基于增强层间特征关联的轻量级即插即用融合策略,即插即用适,用于小目标检测原创 2025-04-14 22:44:41 · 68 阅读 · 0 评论 -
【YOLOv8改进 - C2f融合】C2f融合SCConv :即插即用的空间和通道重建卷积
【YOLOv8改进 - C2f融合】C2f融合SCConv :即插即用的空间和通道重建卷积原创 2025-03-20 22:46:40 · 180 阅读 · 0 评论 -
【YOLOv8改进 - C2f融合】C2f融合DWRSeg二次创新C2f_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLOv8改进 - C2f融合】C2f融合DWRSeg二次创新C2f_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测为了降低获取多尺度上下文信息的难度,我们提出了一种高效的多尺度特征提取方法,将原来的单步方法分解为两个步骤:区域残差化-语义残差化。在这种方法中,多速率深度扩张卷积在特征提取中扮演了一个简单的角色:在第二步中基于第一步提供的每个简明区域形式的特征图,执行具有一个期望感受野的简单基于语义的形态滤波,以提高其效率。原创 2025-03-15 22:28:51 · 144 阅读 · 0 评论 -
【YOLOv8改进 - 卷积Conv】LAE: 轻量级自适应提取卷积,从多尺度特征图中获得更多的上下文信息和高分辨率细节
【YOLOv8改进 - 卷积Conv】LAE: 轻量级自适应提取卷积,从多尺度特征图中获得更多的上下文信息和高分辨率细节尽管基本的YOLO框架由于其快速速度确保了实时检测,但它在同时保持精度方面仍然面临挑战。为了缓解上述问题,我们提出了一种名为轻量级旁路匹配Lightweight Shunt Matching-YOLO(LSM-YOLO)的新型模型,该模型包含轻量级自适应提取(LAE)和多路径旁路特征匹配(MSFM)。原创 2025-03-15 22:04:28 · 118 阅读 · 0 评论 -
【YOLOv8改进 - 卷积Conv】融合MogaNet中的CA block(多通道聚合模块)
【YOLOv8改进 - 卷积Conv】融合MogaNet中的CA block(多通道聚合模块)我们提出了一种新的现代卷积网络系列,称为 MogaNet,用于在纯基于卷积网络的模型中进行判别性视觉表示学习,具有良好的复杂性-性能权衡。MogaNet 将概念上简单但有效的卷积和门控聚合封装到一个紧凑的模块中,其中判别性特征被有效地收集并自适应地语境化。原创 2025-03-15 11:23:07 · 92 阅读 · 0 评论 -
【YOLOv8改进 - C2f融合】C2f融合CoTAttention_上下文转换器注意力,增强视觉表示并提高计算机视觉任务的性能
【YOLOv8改进 - C2f融合】C2f融合CoTAttention_上下文转换器注意力,增强视觉表示并提高计算机视觉任务的性能原创 2025-03-14 07:30:00 · 92 阅读 · 0 评论 -
【YOLOv8改进 - 卷积Conv】融合MogaNet中的Multi-Order Gated Aggregation(多阶门控聚合模块)
【YOLOv8改进 - 卷积Conv】融合MogaNet中的Multi-Order Gated Aggregation(多阶门控聚合模块)为了应对这一挑战,我们提出了一种新的现代卷积网络系列,称为 MogaNet,用于在纯基于卷积网络的模型中进行判别性视觉表示学习,具有良好的复杂性-性能权衡。MogaNet 将概念上简单但有效的卷积和门控聚合封装到一个紧凑的模块中,其中判别性特征被有效地收集并自适应地语境化。原创 2025-03-13 21:38:44 · 72 阅读 · 0 评论 -
【YOLOv8改进-注意力机制】D-LKA Attention:可变形大核注意力
【YOLOv8改进-注意力机制】D-LKA Attention:可变形大核注意力然而,这些模型的计算需求随着token数量的平方增加,限制了其深度和分辨率能力。大多数现有方法以逐片处理三维体积图像数据(称为伪3D),这忽略了重要的片间信息,从而降低了模型的整体性能。为了解决这些挑战,我们引入了可变形大核注意力(D-LKA Attention)的概念,这是一种简化的注意力机制,采用大卷积核以充分利用体积上下文信息。该机制在类似于自注意力的感受野内运行,同时避免了计算开销。原创 2025-03-13 21:03:46 · 107 阅读 · 0 评论 -
【YOLOv8改进 - 卷积Conv】 LDConv(Linear deformable convoluton):线性可变形卷积
【YOLOv8改进 - 卷积Conv】 LDConv(Linear deformable convoluton):线性可变形卷积:任意数量的参数和任意采样形状的即插即用的卷积基于卷积操作的神经网络在深度学习领域取得了显著的成果,但标准卷积操作存在两个固有的缺陷。一方面,卷积操作仅限于局部窗口,因此无法捕捉其他位置的信息,并且其采样形状是固定的。另一方面,卷积核的大小固定为k×kk \times kk×k,这是一个固定的正方形形状,且参数的数量通常会随着大小的增加呈平方增长。原创 2025-03-08 22:28:09 · 131 阅读 · 0 评论 -
【YOLOv8改进 - C2f融合】C2f融合iRMB: 倒置残差移动块,即插即用的轻量注意力
【YOLOv8改进 - C2f融合】C2f融合iRMB: 倒置残差移动块,即插即用的轻量注意力我们将基于CNN的IRB扩展到基于注意力的模型,并提出了一种单残差元移动块(MMB)用于轻量级模型设计。原创 2025-03-08 21:40:05 · 115 阅读 · 0 评论 -
【YOLOv8改进 - C2f融合】C2f融合MLCA(Mixed local channel attention):混合局部通道注意力
【YOLOv8改进 - C2f融合】C2f融合MLCA(Mixed local channel attention):混合局部通道注意力.本项目介绍了一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,该模块同时考虑通道信息和空间信息,并结合局部信息和全局信息以提高网络的表达效果。基于该模块,我们提出了 MobileNet-Attention-YOLO(MAY) 算法,用于比较各种注意力模块的性能。原创 2025-03-08 14:20:45 · 123 阅读 · 0 评论 -
【YOLOv8改进 - 卷积Conv】Diverse Branch Block(DBB):多样分支模块
【YOLOv8改进 - 卷积Conv】Diverse Branch Block(DBB):多样分支模块这个模块名为多样分支模块(Diverse Branch Block,DBB),它通过组合不同尺度和复杂度的多样化分支来丰富特征空间,从而增强单一卷积的表示能力,这些分支包括卷积序列、多尺度卷积以及平均池化等。在训练完成后,DBB可以等效转换为单层卷积用于部署。与新型ConvNet架构的创新不同,DBB复杂化了训练时的微结构,但保持了宏观架构不变,因此可以直接替换任何架构中的常规卷积层。原创 2025-03-07 07:00:00 · 80 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】 ParNet :并行子网络结构实现低深度但高性能的神经网络架构
【YOLOv8改进 - 注意力机制】 ParNet :并行子网络结构实现低深度但高性能的神经网络架构我们证明了这是可行的。为此,我们使用并行子网络,而不是将一层层堆叠起来。这样可以在保持高性能的同时有效减少网络的深度。通过利用并行子结构,我们首次展示了一个深度仅为12的网络可以在ImageNet上实现超过80%的Top-1准确率,在CIFAR10上达到96%,在CIFAR100上达到81%。我们还展示了一个深度为12的骨干网络在MS-COCO上可以实现48%的AP。原创 2025-03-04 21:13:35 · 101 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】TripletAttention:轻量有效的三元注意力
【YOLOv8改进 - 注意力机制】TripletAttention:轻量有效的三元注意力在本文中,我们研究了轻量但有效的注意力机制,并提出了三重注意力,这是一种通过使用三分支结构捕获跨维度交互来计算注意力权重的新方法。对于输入张量,三重注意力通过旋转操作及后续的残差变换构建维度间依赖关系,并以可忽略的计算开销编码通道间和空间信息。我们的方法简单且高效,可以作为附加模块轻松插入经典骨干网络中。原创 2025-03-04 21:04:59 · 51 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】ELA(Efficient Local Attention):深度卷积神经网络的高效局部注意力机制
【YOLOv8改进 - 注意力机制】ELA(Efficient Local Attention):深度卷积神经网络的高效局部注意力机制.然而,现有方法往往难以有效利用空间信息,或者即使能够利用空间信息,也通常以减少通道维度或增加神经网络复杂性为代价。为了解决这些局限性,本文提出了一种高效的局部注意力(Efficient Local Attention,ELA)方法,该方法通过简单的结构实现了显著的性能提升。原创 2025-03-05 07:00:00 · 116 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】GCT(Gaussian Context Transformer):高斯上下文变换器
【YOLOv8改进 - 注意力机制】GCT(Gaussian Context Transformer):高斯上下文变换这些方法通常通过全连接层或线性变换来学习全局上下文与注意力激活之间的关系。然而,我们的实验证明,尽管引入了许多参数,这些注意力模块可能无法很好地学习这种关系。在本文中,我们假设这种关系是预先确定的。基于这一假设,我们提出了一种简单而高效的通道注意力模块,称为高斯上下文变换器(Gaussian Context Transformer,GCT),它使用满足预设关系的高斯函数实现上下文特征的激发。原创 2025-03-04 07:00:00 · 62 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】CGAFusion(Content-Guided Attention): 内容引导注意力特征融合
【YOLOv8改进 - 注意力机制】CGAFusion(Content-Guided Attention): 内容引导注意力特征融合.单幅图像去雾是一个具有挑战性的病态问题,其目的是从观察到的雾霾图像中估计出无雾图像。一些现有的基于深度学习的方法致力于通过增加卷积的深度或宽度来提高模型的性能。然而,卷积神经网络(CNN)结构的学习能力仍未得到充分探索。本文提出了一种细节增强注意力模块(DEAB),该模块由细节增强卷积(DEConv)和内容引导注意力(CGA)组成,原创 2025-03-03 21:25:12 · 178 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】SOCA:可训练的二阶通道注意力,自适应地重新缩放通道特征,以获得更具辨别性的表示
【YOLOv8改进 - 注意力机制】SOCA:可训练的二阶通道注意力,自适应地重新缩放通道特征,以获得更具辨别性的表示。本文提出了一种二阶注意力网络(SAN),以增强特征表达和特征相关性学习的能力。具体而言,我们开发了一种新颖的可训练二阶通道注意力(SOCA)模块,通过利用二阶特征统计来自适应地重新调整通道特征,以实现更具辨别性的表示。原创 2025-02-27 21:20:19 · 63 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】 SCSA通过结合空间注意力和通道注意力,提高各种下游视觉任务的性能。
【YOLOv8改进 - 注意力机制】 SCSA通过结合空间注意力和通道注意力,提高各种下游视觉任务的性能。本研究旨在揭示空间注意力和通道注意力在多语义层面上的协同关系,提出了一种新颖的空间与通道协同注意力模块(SCSA)原创 2025-02-25 22:09:50 · 124 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】Axial Attention:轴向注意力,提高计算效率和内存使用
【YOLOv8改进 - 注意力机制】Axial Attention:轴向注意力,提高计算效率和内存使用我们提出了,这是一种基于自注意力机制的自回归模型,适用于图像和其他高维张量形式的数据。现有的自回归模型在处理高维数据时,通常面临以下问题:要么需要过大的计算资源,要么在降低资源需求的同时不得不在分布表达能力或实现简便性上做出妥协。相比之下,我们的架构既保持了对数据联合分布的完整表达能力,也能轻松使用标准深度学习框架进行实现,同时在内存和计算需求上保持合理性,并在标准生成建模基准测试中取得了最先进的结果。原创 2025-02-24 21:46:54 · 90 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】HaloNet通过局部自注意力机制(Local Self-Attention)来捕捉空间交互
【YOLOv8改进 - 注意力机制】HaloNet通过局部自注意力机制(Local Self-Attention)来捕捉空间交互。自注意力机制因其与参数无关的感受野扩展能力以及基于内容的交互方式,被认为有潜力提升计算机视觉系统的性能,这与卷积的参数依赖型感受野扩展和与内容无关的交互方式形成了鲜明对比。最近的研究表明,与基线卷积模型(如 ResNet-50)相比,自注意力模型在精度-参数权衡方面取得了令人鼓舞的改进。在这项工作中,我们旨在开发不仅能超越经典基线模型,原创 2025-02-22 21:49:52 · 73 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】Axial Attention:轴向注意力,提高计算效率和内存使用
【YOLOv8改进 - 注意力机制】Axial Attention:轴向注意力,提高计算效率和内存使用原创 2025-01-23 09:15:15 · 117 阅读 · 0 评论 -
【YOLOv8改进- 损失函数】 NWD(Normalized Wasserstein Distance:归一化 Wasserstein 距离),助力微小目标检测。
【YOLOv8改进- 损失函数】 NWD(Normalized Wasserstein Distance:归一化 Wasserstein 距离),助力微小目标检测。原创 2024-08-30 22:59:13 · 15532 阅读 · 0 评论 -
【YOLOv8改进- 多模块融合改进】ResBlock + GAM: 基于ResBlock的全局注意力机制ResBlock_ GAM
【YOLOv8改进- 多模块融合改进】ResBlock + GAM: 基于ResBlock的全局注意力机制ResBlock_ GAM,增强特证提取原创 2024-08-13 08:58:27 · 631 阅读 · 0 评论 -
【YOLOv8改进- 多模块融合改进】ResBlock + CBAM: 基于ResBlock的通道+空间注意力,增强特征提取
【YOLOv8改进- 多模块融合改进】ResBlock + CBAM: 基于ResBlock的通道+空间注意力,增强特证提取原创 2024-08-13 08:56:35 · 816 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力
虽然卷积神经网络(CNNs)中使用自下而上的局部操作符与自然图像的一些统计特性很好地匹配,但这也可能阻止这些模型捕捉上下文的长程特征交互。在这项工作中,我们提出了一种简单且轻量的方法,以更好地在CNNs中利用上下文信息。我们通过引入一对操作符来实现这一目标:聚集(gather),该操作符高效地聚合来自大空间范围的特征响应;激发(excite),将汇集的信息重新分配给局部特征。这些操作符在添加参数数量和计算复杂度方面都很便宜,并且可以直接集成到现有架构中以提高其性能。原创 2024-07-23 15:31:25 · 1155 阅读 · 0 评论 -
【YOLOv8改进- 多模块融合改进】RFAConv+ TripletAttention: 基于感受野注意力卷积与三元注意力的四头小目标检测头,,提高特证提取的效率以及准确率。
【YOLOv8改进- 多模块融合改进】RFAConv+ TripletAttention: 基于感受野注意力卷积与三元注意力的四头小目标检测头,,提高特证提取的效率以及准确率。原创 2024-08-12 10:40:16 · 584 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】 CAA: 上下文锚点注意力模块,处理尺度变化大或长形目标
【YOLOv8改进 - 注意力机制】 CAA: 上下文锚点注意力模块,处理尺度变化大或长形目标原创 2024-08-12 09:05:11 · 2715 阅读 · 0 评论 -
【YOLOv8改进- 多模块融合改进】Non-Local+ LSKNet : 自注意力模型与空间选择注意力的融合改进,助力小目标检测高效涨点
【YOLOv8改进- 多模块融合改进】Non-Local+ LSKNet : 自注意力模型与空间选择注意力的融合改进,助力小目标检测高效涨点原创 2024-08-10 09:39:06 · 349 阅读 · 0 评论 -
【YOLOv8改进- 多模块融合改进】CPCA + CARAFE : 通道先验卷积注意力与上采样算子的融合改进,助力细节提升!
【YOLOv8改进- 多模块融合改进】CPCA + CARAFE : 通道先验卷积注意力与上采样算子的融合改进,助力细节提升!原创 2024-08-10 09:35:06 · 572 阅读 · 0 评论 -
YOLO8训练遇到的各种报错及解决方案
在Windows系统中,由于其多进程模型的特殊性,使用多进程加载数据时经常会遇到问题。在Linux系统中,通常可以使用多个子进程进行数据加载,但在Windows系统中必须将进程数设置为单进程来避免错误。此问题可能是当前使用的GPU正在被其他应用程序占用,导致显存不足。需要关闭其他应用程序以释放显存。这是由于Pillow版本问题,最新的10.0版本会产生上述问题。虽然调整后会在一定程度上影响模型的泛化能力并容易导致过拟合,但在必要时可以将。降低PyTorch和CUDA版本。使用device指定GPU。原创 2024-08-06 10:53:28 · 1373 阅读 · 0 评论 -
【YOLOv8改进 - 注意力机制】 Agent Attention :代理注意力, softmax注意力与线性注意力的优雅融合
注意力模块是Transformer的关键组件。虽然全局注意力机制具有很高的表达能力,但其过高的计算成本限制了其在各种场景中的适用性。本文提出了一种新的注意力范式,称为Agent Attention,以在计算效率和表示能力之间取得有利的平衡。具体而言,Agent Attention表示为四元组(Q, A, K, V),在传统注意力模块中引入了一组额外的代理令牌A。代理令牌首先作为查询令牌Q的代理,从K和V中聚合信息,然后将信息广播回Q。原创 2024-08-05 10:56:01 · 952 阅读 · 5 评论 -
【YOLOv8改进- 多模块融合改进】发论文神器SPPF_LSKA,结合各种创新改进,以融合SimAM注意力机制为例!
【YOLOv8改进- 多模块融合改进】发论文神器SPPF_LSKA,结合各种创新改进,以融合SimAM注意力机制为例!原创 2024-07-25 15:35:30 · 1122 阅读 · 3 评论 -
【YOLOv8改进 - 卷积Conv】DCNv3: 可变形卷积,结合稀疏注意力机制与卷积的创新算子
【YOLOv8改进 - 卷积Conv】DCNv3: 可变形卷积,结合稀疏注意力机制与卷积的创新算子原创 2024-07-25 14:29:48 · 1446 阅读 · 4 评论