1.创新点
- 没有加入注意力什么的,就是在sinet的基础上改的,甚至删除了SA模块,主要就是特征融合,最后4项指标确实效果不好,但是主要是提升了速度。
- 自己创建了一个评价指标
平均精度变化率:
速度变化指标:
2.摘要
伪装对象与背景环境之间的内在相似性阻碍了伪装对象的自动检测/分割,而用于深度学习的新颖网络架构有望克服这一挑战并提高检测精度。然而,现有的这些用于区分伪装物体及其背景的网络架构没有考虑到检测速度的约束,导致计算复杂度较高,无法满足快速检测的要求。因此,基于人类视觉系统,本研究提出了一种采用多级特征融合的单级轻量级伪装目标检测网络,融合了各种特征层和感受野大小的特征。使用正常伪装物体的三个基准数据集,轻量级网络(LINEt)模型表现出优于现有六种主流伪装物体检测方法的准确性。其检测速度为126.3帧/秒,明显高于现有主流方法,可实现快速检测,最高提升187.62%。 LINEt 的精度分别是 Resnet101 和 Resnet152 的最小值和最大值。这些发现为伪装目标检测算法的多样化应用铺平了道路。
关键词:Camouflaged object detection
Lightweight
Multilevel feature fusion
Feature extraction network
3.模型结构图
4.结论
与现有的模拟动物捕食的两阶段检测方法相反,我们通过整合各种特征层大小和感受野大小的特征,提出了一种简单有效的单阶段LINet检测框架,考虑到COD算法的时间限制,我们讨论了各种特征提取网络对LINet模型准确性和速度的影响,实验结果表明,与主流算法相比,LINet的检测速度可提高187.62%,但检测精度最大降低17.49%,新颖的LINet展示了实时伪装目标检测模型效率的显著提高,此外,所提出的方法可以应用于快速检测伪装目标的场景。