Eight
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 25251 Accepted Submission(s): 6726
Special Judge
Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x r-> d-> r->
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
Sample Input
2 3 4 1 5 x 7 6 8
Sample Output
ullddrurdllurdruldr
#include<stdio.h> #include<algorithm> #include<string.h> #include<queue> #define N 400005 using namespace std; typedef long long ll; const int M=1e9+7; struct node{ int f[3][3],x,y,g,h,hashk; bool operator < (const node a)const{ return h==a.h?g>a.g:h>a.h; } }; int ha[9]={1,1,2,6,24,120,720,5040,40320}; int u[]={-1,1,0,0}; int v[]={0,0,-1,1}; char c[]="udlr",s[N]; int pre[N],ji[N]; int get_hash(node e)//康托展开,压缩空间,根据逆序对的个数 { int a[9],i,j,k=0,ans=0; for(i=0;i<3;i++) for(j=0;j<3;j++) a[k++]=e.f[i][j]; for(i=0;i<9;i++) { k=0; for(j=0;j<i;j++) if(a[j]>a[i])k++; ans+=ha[i]*k; } return ans; } int get_h(node e)//与目标位之差 { int i,j,ans=0; for(i=0;i<3;i++) { for(j=0;j<3;j++) { if(e.f[i][j]) ans+=abs(i-(e.f[i][j]-1)/3)+abs(j-(e.f[i][j]-1)%3); } } return ans; } void bfs(node src,int to) { memset(ji,0,sizeof(ji)); src.hashk=get_hash(src); src.g=0; src.h=get_h(src); ji[src.hashk]=1; pre[src.hashk]=-1; if(src.hashk==to)return; priority_queue<node>Q; Q.push(src); while(!Q.empty()) { node p=Q.top(); Q.pop(); for(int i=0;i<4;i++) { node now=p; now.x+=u[i]; now.y+=v[i]; if(now.x<0||now.x>=3||now.y<0||now.y>=3)continue; swap(now.f[p.x][p.y],now.f[now.x][now.y]); now.hashk=get_hash(now); if(ji[now.hashk])continue; ji[now.hashk]++; now.g++; now.h=get_h(now); pre[now.hashk]=p.hashk; s[now.hashk]=c[i]; if(now.hashk==to)return; Q.push(now); } } } void print(int p) { if(pre[p]==-1)return; print(pre[p]); printf("%c",s[p]); } int main () { char a[30]; node to; for(int i=0;i<9;i++) to.f[i/3][i%3]=(i+1)%9; to.hashk=get_hash(to); while(gets(a)) { int k=0,n; node e; n=strlen(a); for(int i=0,j=0;i<n;i++) { if(a[i]==' ')continue; if(a[i]=='x'){ e.f[j/3][j%3]=0; e.x=j/3; e.y=j%3; } else e.f[j/3][j%3]=a[i]-'0'; j++; } //判断逆序数 for(int i=0;i<9;i++) { if(e.f[i/3][i%3]==0)continue; for(int j=0;j<i;j++) { if(e.f[j/3][j%3]==0)continue; if(e.f[j/3][j%3]>e.f[i/3][i%3])k++; } } if(k&1)printf("unsolvable\n"); else { bfs(e,to.hashk); print(to.hashk); printf("\n"); } } return 0; }