题意:
n个石子堆排成一排,每次可以将连续的最少L堆,最多R堆石子合并在一起,消耗的代价为要合并的石子总数
求合并成1堆的最小代价,如果无法做到输出0
思路:
dp[i][j][k]表示区间[i, j]分成k堆的最小代价,转移有
k=1时:
dp[i][j][1] = min(dp[i][p][x-1]+dp[p+1][j][1]+sum[i][j] )(i<=p<=j-1;L<=x<=R)
k>1时:
dp[i][j][k] = min(dp[i][p][k-1]+dp[p+1][j][1] )( i<=p<=j-1)
原址:点击打开链接
看着做的人这么多,但是完全想不出来怎么做,贼气
代码:
#include<bits/stdc++.h>
#define P pair<int,int>
#define N 105
using namespace std;
typedef long long ll;
const int inf=1e9+7;
const ll M=19260817;
int dp[N][N][N],sum[N];
int main()
{
int n,l,r;
while(~scanf("%d%d%d",&n,&l,&r))
{
for(int i=1;i<=n;i++){
scanf("%d",&sum[i]);
sum[i]+=sum[i-1];
}
for(int i=0;i<=n;i++)
for(int j=0;j<=n;j++)
for(int k=0;k<=n;k++)
dp[i][j][k]=inf;
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
dp[i][j][j-i+1]=0;
for(int d=1;d<n;d++){
for(int i=1;i+d<=n;i++){
for(int j=i;j<i+d;j++)
for(int k=l-1;k<r;k++)
dp[i][i+d][1]=min(dp[i][i+d][1],dp[i][j][k]+dp[j+1][i+d][1]+sum[i+d]-sum[i-1]);
for(int j=2;j<=d;j++)
for(int k=i;k<i+d;k++)
dp[i][i+d][j]=min(dp[i][i+d][j],dp[i][k][j-1]+dp[k+1][i+d][1]);
}
}
if(dp[1][n][1]==inf)dp[1][n][1]=0;
printf("%d\n",dp[1][n][1]);
}
return 0;
}