hihocoder 1636 Pangu and Stones

题意:

n个石子堆排成一排,每次可以将连续的最少L堆,最多R堆石子合并在一起,消耗的代价为要合并的石子总数

求合并成1堆的最小代价,如果无法做到输出0


思路:

dp[i][j][k]表示区间[i, j]分成k堆的最小代价,转移有

k=1时:

dp[i][j][1] = min(dp[i][p][x-1]+dp[p+1][j][1]+sum[i][j] )(i<=p<=j-1;L<=x<=R)

k>1时:

dp[i][j][k] = min(dp[i][p][k-1]+dp[p+1][j][1] )( i<=p<=j-1)

原址:点击打开链接


看着做的人这么多,但是完全想不出来怎么做,贼气


代码:

#include<bits/stdc++.h>
#define P pair<int,int>
#define N 105
using namespace std;
typedef long long ll;
const int inf=1e9+7;
const ll M=19260817;
int dp[N][N][N],sum[N];
int main()
{
    int n,l,r;
    while(~scanf("%d%d%d",&n,&l,&r))
    {
        for(int i=1;i<=n;i++){
            scanf("%d",&sum[i]);
            sum[i]+=sum[i-1];
        }
        for(int i=0;i<=n;i++)
            for(int j=0;j<=n;j++)
                for(int k=0;k<=n;k++)
                    dp[i][j][k]=inf;
        for(int i=1;i<=n;i++)
            for(int j=i;j<=n;j++)
                dp[i][j][j-i+1]=0;
        for(int d=1;d<n;d++){
            for(int i=1;i+d<=n;i++){
                for(int j=i;j<i+d;j++)
                    for(int k=l-1;k<r;k++)
                        dp[i][i+d][1]=min(dp[i][i+d][1],dp[i][j][k]+dp[j+1][i+d][1]+sum[i+d]-sum[i-1]);
                for(int j=2;j<=d;j++)
                    for(int k=i;k<i+d;k++)
                        dp[i][i+d][j]=min(dp[i][i+d][j],dp[i][k][j-1]+dp[k+1][i+d][1]);
            }
        }
        if(dp[1][n][1]==inf)dp[1][n][1]=0;
        printf("%d\n",dp[1][n][1]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值