题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6304
题意:看一眼就懂了
做法:找规律,每个数出现的次数k,满足以2^k差为2^k+1的等差数列,然后就可以了,然后正解是差分,阿贝尔变换,本人不会
代码
#include<bits/stdc++.h>
#define N 100005
#define P pair<int,int>
using namespace std;
typedef long long ll;
const int M=1e9+7;
const int inf=1e9+7;
ll pre[N],f[N];
int main()
{
int t;
ll n;
pre[0]=f[0]=1;
for(int i=1;i<63;i++){
pre[i]=pre[i-1]*2+1;
f[i]=f[i-1]*2;
}
for(scanf("%d",&t);t;t--)
{
scanf("%lld",&n);
ll m=n,p=0;
for(int i=62;i>=0;i--)
if(pre[i]<=m){
m-=pre[i];
p|=f[i];
}
p+=(m>0);
ll sum=1,ans=1;
ll ni=M+1>>1;
for(int i=1;i<63&&f[i-1]<p;i++){
ll k=(p-f[i-1]-1)/f[i];
sum+=(k+1)*i;
ll x=f[i-1]+k*f[i];
(ans+=(f[i-1]+x)%M*((k+1)%M)%M*ni%M*i%M)%=M;
}
(ans+=(n-sum)%M*(p%M)%M)%M;
printf("%lld\n",(ans+M)%M);
}
return 0;
}