题意
一个数组a,一个数组v,求v[gcd(ai,ai+1,ai+2,ai+3)]的求和,a中会有0,表示可以取1~m,求最后的期望
题解
设 f[i][x][y][z] 表示考虑前 i 个位置,ai = x, gcd(ai, ai-1) = y, gcd(ai, ai-1, ai-2) = z 的期望。枚举 ai+1 的值转移即可,显然合法状态中 y|x, z|y,当 m = 100 时 共有 1471种状态。首先预处理出这些状态,和状态的转移情况和得到的值,一层for1~n,一层for状态数,最后一层for所有可能的a[i],转移,最后求和,除以m^a[i]=0的个数
代码
#include<bits/stdc++.h>
#define N 105
#define P pair<int,int>
using namespace std;
typedef long long ll;
const int M=1e9+7;
const int inf=1e9+7;
ll a[N],v[N],id[N][N][N],go[1500][N],dp[N][1500],g[N][N],w[1500][N];
int gcd(int a,int b){
return a?gcd(b%a,a):b;
}
ll quick(ll a,ll b){
ll c=1;
while(b){
if(b&1)c=c*a%M;
a=a*a%M;
b>>=1;
}
return c;
}
int main()
{
int t,n,m;
for(scanf("%d",&t);t;t--)
{
scanf("%d%d",&n,&m);
int num=0;
for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
if(!a[i])num++;
}
for(int i=1;i<=m;i++){
scanf("%lld",&v[i]);
for(int j=1;j<=m;j++)
g[i][j]=gcd(i,j);
}
int tot=0;
for(int i=1;i<=m;i++)
for(int j=i;j<=m;j+=i)
for(int k=j;k<=m;k+=j)
id[i][j][k]=++tot;
for(int i=1;i<=m;i++)
for(int j=i;j<=m;j+=i)
for(int k=j;k<=m;k+=j){
int x=id[i][j][k];
for(int y=1;y<=m;y++){
go[x][y]=id[g[j][y]][g[k][y]][y];
w[x][y]=v[g[i][y]];
}
}
memset(dp,0,sizeof(dp));
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
for(int k=1;k<=m;k++){
if(a[1]&&i!=a[1])continue;
if(a[2]&&j!=a[2])continue;
if(a[3]&&k!=a[3])continue;
dp[3][id[g[k][g[j][i]]][g[j][k]][k]]++;
}
for(int i=4;i<=n;i++){
for(int j=1;j<=tot;j++){
if(!dp[i-1][j])continue;
for(int k=1;k<=m;k++){
if(a[i]&&k!=a[i])continue;
int x=go[j][k];
dp[i][x]+=dp[i-1][j]*w[j][k]%M;
if(dp[i][x]>=M)dp[i][x]-=M;
}
}
}
ll ans=0;
for(int i=1;i<=tot;i++)
(ans+=dp[n][i])%=M;
printf("%lld\n",ans*quick(quick(m,num),M-2)%M);
}
return 0;
}