2018 Multi-University Training Contest 4 6341 Problem J. Let Sudoku Rotate(搜索)

题意

给你一个16*16的数独,每次可以选择一个4*4的方格逆时针选择一次,并且只能是题目中要求的方格,问转成一个合理的数独的最小步数

 

题解

深搜,剪纸,枚举每一个方格旋转了几次,只统计已经枚举过的方格,在旋转的同时判断是不是合法,记录步数

 

代码

#include<bits/stdc++.h>
#define N 100005
#define P pair<int,int>
using namespace std;
typedef long long ll;
const int M=1e9+7;
const int inf=1e9+7;
char s[20][20];
int a[16][16],r[16][16],c[16][16],ans;
void add(int x,int y,int k)
{
    for(int i=4*x;i<4*x+4;i++){
        for(int j=4*y;j<4*y+4;j++){
            r[i][a[i][j]]+=k;
            c[j][a[i][j]]+=k;
        }
    }
}
bool zhuan(int x,int y)
{
    int b[4][4];
    for(int i=4*x;i<4*x+4;i++){
        for(int j=4*y;j<4*y+4;j++){
            r[i][a[i][j]]--;
            c[j][a[i][j]]--;
            b[j-4*y][4*x+4-i-1]=a[i][j];
        }
    }
    bool f=1;
    for(int i=4*x;i<4*x+4;i++){
        for(int j=4*y;j<4*y+4;j++){
            a[i][j]=b[i-x*4][j-4*y];
            r[i][a[i][j]]++;
            c[j][a[i][j]]++;
            if(r[i][a[i][j]]>1||c[j][a[i][j]]>1)f=0;
        }
    }
    return f;
}
void dfs(int x,int y,int d)
{
    if(y==4)y=0,x++;
    if(x==4){
        ans=min(d,ans);
        return;
    }
    if(d>=ans)return;
    add(x,y,1);
    for(int i=1;i<=4;i++)
        if(zhuan(x,y))dfs(x,y+1,d+(i&3));
    add(x,y,-1);
}
int main()
{
    int t;
    for(~scanf("%d",&t);t;t--)
    {
        memset(r,0,sizeof(r));
        memset(c,0,sizeof(c));
        for(int i=0;i<16;i++){
            scanf("%s",s[i]);
            for(int j=0;j<16;j++){
                if(s[i][j]>='0'&&s[i][j]<='9')a[i][j]=s[i][j]-'0';
                else a[i][j]=10+s[i][j]-'A';
            }
        }
        ans=inf;
        dfs(0,0,0);
        printf("%d\n",ans);
    }
    return 0;
}

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值