时间复杂度定义:
在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。
特别注意,时间复杂度只考虑高阶项,而且不保留其系数。
时间复杂度计算方法:
一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n)。
分析:随着模块n的增大,算法执行的时间的增长率和 f(n) 的增长率成正比,所以 f(n) 越小,算法的时间复杂度越低,算法的效率越高。
举例:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[i][j]=0;//该步骤属于基本操作执行次数:n的平方次
for(k=1;k<=n;++k)
c[i][j]+=a[i][k]*b[k][j];//该步骤属于基本操作执行次数:n的三次方次
} }
关于这个代码,
则有 T(n) = n 的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级
则有 f(n) = n的三次方,然后根据 T(n)/f(n) 求极限可得到常数c
则该算法的时间复杂度:T(n) = O(n^3) 注:n^3即是n的3次方。
而下一个:
int Fun(int n)
{
if(n=0||n=)
return 1;
else
return Fun(n/2)+1;}
这个代码时间复杂度就是n。