2743: [HEOI2012]采花
Time Limit: 15 Sec Memory Limit: 128 MBSubmit: 2820 Solved: 1442
[ Submit][ Status][ Discuss]
Description
萧芸斓是Z国的公主,平时的一大爱好是采花。今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花
。花园足够大,容纳了n朵花,花有c种颜色(用整数1-c表示),且花是排成一排的,以便于公主采花。公主每次
采花后会统计采到的花的颜色数,颜色数越多她会越高兴!同时,她有一癖好,她不允许最后自己采到的花中,某
一颜色的花只有一朵。为此,公主每采一朵花,要么此前已采到此颜色的花,要么有相当正确的直觉告诉她,她必
能再次采到此颜色的花。由于时间关系,公主只能走过花园连续的一段进行采花,便让女仆福涵洁安排行程。福涵
洁综合各种因素拟定了m个行程,然后一一向你询问公主能采到多少朵花(她知道你是编程高手,定能快速给出答
案!),最后会选择令公主最高兴的行程(为了拿到更多奖金!)。
Input
第一行四个空格隔开的整数n、c以及m。
接下来一行n个空格隔开的整数,每个数在[1, c]间,第i个数表示第i朵花的颜色。
接下来m行每行两个空格隔开的整数l和r(l ≤ r),表示女仆安排的行程为公主经过第l到第r朵花进行采花。
Output
共m行,每行一个整数,第i个数表示公主在女仆的第i个行程中能采到的花的颜色数。
Sample Input
5 3 5
1 2 2 3 1
1 5
1 2
2 2
2 3
3 5
1 2 2 3 1
1 5
1 2
2 2
2 3
3 5
Sample Output
2
0
0
1
0
【样例说明】
询问[1, 5]:公主采颜色为1和2的花,由于颜色3的花只有一朵,公主不采;
询问[1, 2]:颜色1和颜色2的花均只有一朵,公主不采;
询问[2, 2]:颜色2的花只有一朵,公主不采;
询问[2, 3]:由于颜色2的花有两朵,公主采颜色2的花;
询问[3, 5]:颜色1、2、3的花各一朵,公主不采。
0
0
1
0
【样例说明】
询问[1, 5]:公主采颜色为1和2的花,由于颜色3的花只有一朵,公主不采;
询问[1, 2]:颜色1和颜色2的花均只有一朵,公主不采;
询问[2, 2]:颜色2的花只有一朵,公主不采;
询问[2, 3]:由于颜色2的花有两朵,公主采颜色2的花;
询问[3, 5]:颜色1、2、3的花各一朵,公主不采。
HINT
【数据范围】
对于100%的数据,1 ≤ n ≤ 10^6,c ≤ n,m ≤10^6。
题解:思路参考bzoj1878HH的项链
只不过这里是第二次出现时是满足题意的,那个题是第一次出现满足题意
这里ans[ans[now]]相当于那个题的ans[now]
ac代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct A
{
int l;
int r;
int id;
};
int d[1000005],n,c,m;//原数组长度
int last[1000005];
A a[1000005];
int pre[1000005];
int ans[1000005];
int cnt[1000005];
bool cmp(A a,A b)
{
return a.r<b.r;
}
int lowbit(int x)
{
return x&(-x);
}
int query(int x)//查询前缀和
{
int res = 0;
while(x)
{
res += d[x];
x -= lowbit(x);
}
return res;
}
void add(int x,int v)//对a[x]进行修改,后面的每一个后缀和都会变化
{
while(x <= n)
{
d[x] += v;
x += lowbit(x);
}
}
int main()
{
scanf("%d %d %d",&n,&c,&m);
for(int i = 1; i <= n; i++)
{
scanf("%d",&pre[i]);
ans[i] = last[pre[i]];
last[pre[i]] = i;
}
for(int i = 1; i <= m; i++)
{
scanf("%d %d",&a[i].l,&a[i].r);
a[i].id = i;
}
sort(a+1,a+1+m,cmp);
int now = 0;
for(int i = 1; i <= m; i++)
{
while(now < a[i].r)
{
now++;
if(ans[now] > 0)
{
add(ans[ans[now]]+1,1);
add(ans[now]+1,-1);
}
}
cnt[a[i].id] = query(a[i].l);
}
for(int i = 1; i <= m; i++)
printf("%d\n",cnt[i]);
return 0;
}