题目大意:
一个人有n种硬币,面值为A1-An,每种硬币的个数为C1-Cn,问可以组成m元以下的不同价值的总数。
解题思路:
中规中矩的多重背包问题。
代码:
#include <iostream>
#include <stdio.h>
#include <cstring>
using namespace std;
int n,m;
int a[105],c[105],newA[1050],f[100005];
int ans;
int main()
{
while(true){
scanf("%d%d",&n,&m);
if(n == 0 && m == 0) break;
for(int i = 0; i < n; i ++){
scanf("%d",&a[i]);
}
for(int i = 0; i < n; i ++){
scanf("%d",&c[i]);
}
int pos = 0;
for(int i = 0; i < n; i ++){
int temp = 1;
while(c[i] > temp){
if(a[i] * temp > m) break;//如果当前组成的面额大于m则停止,因为不可能被用到,直接舍弃
newA[pos++] = a[i] * temp;
c[i] -= temp;
temp *= 2;
}
if(c[i] != 0 && a[i] * c[i] <= m){
newA[pos++] = a[i] * c[i];
}
}
n = pos;
memset(f,false,sizeof(f));
f[0] = true;
for(int i = 0; i < n; i ++){
for(int j = m; j >= newA[i]; j --){
f[j] = f[j] || f[j - newA[i]];
}
}
ans = 0;
for(int j = 1; j <= m; j ++){
if(f[j]) ans ++;
}
printf("%d\n",ans);
}
return 0;
}