Leetcode 233. Number of Digit One

Given an integer n, count the total number of digit 1 appearing in all non-negative integers less than or equal to n.

For example:
Given n = 13,
Return 6, because digit 1 occurred in the following numbers: 1, 10, 11, 12, 13.

给一个数,计算不超过这个数的所有正数中,1出现的次数。

一开始的想法,分段计算 0-9,10-99,100-999......除了个位,每一段1出现的次数 = 数字总数 * k - k * 8*9^(k - 1),k为位数,即用这一段所有数字的总和减去不使用1构成的数字的个数乘上位数,这种想法太不简洁。

优美解法:枚举不超过n的每一位,对每一位1出现的次数进行统计。

参考这里:https://discuss.leetcode.com/topic/18054/4-lines-o-log-n-c-java-python

以算百位上1为例子: 

假设百位上是0, 1, 和 >=2 三种情况:

 case 1: n=3141092, a= 31410, b=92. 计算百位上1的个数应该为 3141 *100 次.

 case 2: n=3141192, a= 31411, b=92. 计算百位上1的个数应该为 3141 *100 + (92+1) 次.

 case 3: n=3141592, a= 31415, b=92. 计算百位上1的个数应该为 (3141+1) *100 次.

所以可以将每一位归纳成这样一个公式:

(a + 8) / 10 * m + (a % 10 == 1) * (b + 1)

需要注意的坑,虽然最终结果不会超过int范围,但是因为中间计算涉及乘法,所以会出现溢出,需要用long long存储中间变量。

class Solution {
public:
    int countDigitOne(int n) {
        int res = 0;
        for(long long i = 1; i <= n ; i *= 10)
        {
            int pre = n / i;
            int suf = n % i;
            long long temp = (pre + 8) / 10 * i;
            if(pre % 10 == 1) temp += suf + 1;
            res += temp;
        }
        return res;
    }
};


### LeetCode Problem 37: Sudoku Solver #### Problem Description The task involves solving a partially filled Sudoku puzzle. The input is represented as a two-dimensional integer array `board` where each element can be either a digit from '1' to '9' or '.' indicating empty cells. #### Solution Approach To solve this problem, one approach uses backtracking combined with depth-first search (DFS). This method tries placing numbers between 1 and 9 into every cell that contains '.', checking whether it leads to a valid solution by ensuring no conflicts arise within rows, columns, and subgrids[^6]. ```cpp void solveSudoku(vector<vector<char>>& board) { backtrack(board); } bool backtrack(vector<vector<char>> &board){ for(int row = 0; row < 9; ++row){ for(int col = 0; col < 9; ++col){ if(board[row][col] != '.') continue; for(char num='1';num<='9';++num){ if(isValidPlacement(board,row,col,num)){ placeNumber(num,board,row,col); if(backtrack(board)) return true; removeNumber(num,board,row,col); } } return false; } } return true; } ``` In the provided code snippet: - A function named `solveSudoku()` initiates the process. - Within `backtrack()`, nested loops iterate over all positions in the grid looking for unassigned spots denoted by '.' - For any such spot found, attempts are made to insert digits ranging from '1' through '9'. - Before insertion, validation checks (`isValidPlacement`) ensure compliance with Sudoku rules regarding uniqueness per row/column/subgrid constraints. - If inserting a number results in reaching a dead end without finding a complete solution, removal occurs before trying another possibility. This algorithm continues until filling out the entire board correctly or exhausting possibilities when returning failure status upward along recursive calls stack frames. --related questions-- 1. How does constraint propagation improve efficiency while solving puzzles like Sudoku? 2. Can genetic algorithms provide alternative methods for tackling similar combinatorial problems effectively? 3. What optimizations could enhance performance further beyond basic DFS/backtracking techniques used here?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值