tensorflow 中tensor与数组之间的转换


# 主要是两个方法:
# 1.数组转tensor:数组a,  tensor_a=tf.convert_to_tensor(a)
# 2.tensor转数组:tensor b, array_b=b.eval()
#
# 下面看一个例子

import tensorflow as tf
import numpy as np

a=np.array([[1,2,3],[4,5,6],[7,8,9]])
print (a)
b=tf.constant(a)

with tf.Session() as sess:
    print (b)
    for x in b.eval():      #b.eval()就得到tensor的数组形式
        print (x)

    print ('a是数组',a)

    tensor_a=tf.convert_to_tensor(a)
    print ('现在转换为tensor了...',tensor_a)
 
下面是程序运行结果:
 
要将一维数组转换为二维数组,可以使用numpy库的reshape函数。假设我们有一个一维数组a,我们可以使用a.reshape(-1, 1)将其转换为一个二维数组。下面是一个示例代码: import numpy as np a = np.array(\[1, 2, 3, 4, 5\]) # 一维数组 print("原始数组:", a) b = a.reshape(-1, 1) # 转换为二维数组 print("转换后的二维数组:", b) 输出结果为: 原始数组: \[1 2 3 4 5\] 转换后的二维数组: \[\[1\] \[2\] \[3\] \[4\] \[5\]\] 在这个示例,我们使用了numpy库的reshape函数将一维数组a转换为了一个列向量的二维数组b。 #### 引用[.reference_title] - *1* [tensorflow tensor数组之间转换](https://blog.csdn.net/accumulate_zhang/article/details/78867890)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [tensorflow 搭建简单的卷积神经网络,输入二维数组完成分类](https://blog.csdn.net/qq_46626133/article/details/119478375)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值