ACdreamer

欢迎关注知乎:https://www.zhihu.com/people/acdreamers/activities

圆的反演变换

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4773


题意:给定两个圆,告诉半径和圆心,它们是相离的,在这两个圆外给定一个点p,求符合条件:过点p的圆且与已知的两个

外切的所有圆的总数和它们的圆心坐标和半径。



分析:根据题意,我们设已知两个圆的半径分别为,它们的圆心分别为,设点p的坐标为


并设要求的圆的圆心为,半径为,那么根据它们的关系我们可以很快就列出方程组:




然后,现在的问题就是来解,但是你会发现这个方程是很难解的,因此为了简化问题,我们利用反演变换来做。



那么,怎么用反演变换来做? 首先,得知道什么是反演变换以及它有什么性质。


反演的定义:


已知一圆C,圆心为O,半径为r,如果P与P’在过圆心O的直线上,且,则称P与P'关于O互为反演。


反演的性质:


(1)除反演中心外,平面上的每一个点都只有唯一的反演点,且这种关系是对称的,位于反演圆上的点,保持在原处,位于

反演圆外部的点,变为圆内部的点,位于反演圆内部的点,变为圆外部的点。 举个最简单的例子,区间以1为反演

半径,那么反演后的区间就是,这就是一维反演,而圆的反演是二维反演。


(2)任意一条不过反演中心的直线,它的反形是经过反演中心的圆,反之亦然,特别地,过反演中心相交的圆,变为不过反

演中心的相交直线。





定理:不过反演中心的圆,它的反形是一个圆,反演中心是这两个互为反形的圆的一个位似中心,任意一对反演点是逆对应

点。用图形来解释,如下图:




那么,对于一个不过反演中心的圆,怎样求它的反形圆?


很容易知道我们只需要求出反形圆的圆心和半径就可以了。


对于上图我们设圆C1的半径为,C2的半径为,反演半径为


那么根据反演的定义有:




那么,消去得到:




这样我们就得到了反形圆的半径,那么还要求反形圆的圆心。



由于C1和O两点的坐标已知,而且我们知道O,C1,C2位于同一直线上,那么很明显对于C2的坐标,我们可以这样计算:


设O的坐标为,C1的坐标为,C2的坐标为


那么有:




至于由上面解处可以很容易得到,这样我们就完成了圆的反演变换。



由于本题的做法是这样的,先以点P为为反演中心,反演半径随便设置都可以,为了计算方便就设为1,把圆C1和圆C2反演后再求这两个圆的

公切线,再把这个公切线反演回去,那么就是一个过点P的圆,且与原来的C1和C2相切。



那么接下来就是如何计算两个圆的公切线了。这里只需要考虑公切线在同一侧的情况。那么,这个自己画图就能很容易计算了。

找到公切线后还要把它反演成圆,这个圆还经过P点,那么很容易得到了。


#include <iostream>
#include <string.h>
#include <stdio.h>
#include <math.h>

using namespace std;
double const eps = 1e-8;

struct Point
{
    double x,y;
    Point(double a = 1.0,double b = 1.0):x(a),y(b){}
    Point operator + (const Point &a)
    {
        return Point(x+a.x,y+a.y);
    }
    Point operator - (const Point &a)
    {
        return Point(x-a.x,y-a.y);
    }
    Point operator * (const double a)
    {
        return Point(a*x,a*y);
    }
    Point Trans()
    {
        return Point(-y,x);
    }
    void Input()
    {
        scanf("%lf%lf",&x,&y);
    }
} ;

struct Circle
{
    Point o;
    double r;
    Circle(Point a = Point(),double b = 1.0):o(a),r(b) {}
    Point getPoint(double alpha)
    {
        return o + Point(r*cos(alpha),r*sin(alpha));
    }
    void Input()
    {
        o.Input();
        scanf("%lf",&r);
    }
    void Output()
    {
        printf("%.8lf %.8lf %.8lf\n",o.x,o.y,r);
    }
} ;

Point p;
Circle c[15];

double dist(Point A,Point B)
{
    return sqrt((A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y));
}

double cross(Point A,Point B,Point C)
{
    return (B.x-A.x)*(C.y-A.y) - (B.y-A.y)*(C.x-A.x);
}

int sign(double x)
{
    return (x > eps) - (x < -eps);
}

Circle Inverse(Circle C)
{
    Circle T;
    double t = dist(C.o,p);
    double x = 1.0 / (t - C.r);
    double y = 1.0 / (t + C.r);
    T.r = (x - y) / 2.0;
    double s = (x + y) / 2.0;
    T.o = p + (C.o - p) * (s / t);
    return T;
}

void add(Point a,Point b,int &k)
{
    double t = cross(a,p,b);
    if(t < 0) t = -t;
    double d = dist(a,b);
    t /= d;
    if(t > eps)
    {
        double w = 0.5 / t;
        Point dir = (b-a).Trans();
        Point a1 = p + dir * (w / d);
        Point b1 = p - dir * (w / d);
        if(fabs(cross(a,b,a1)) < fabs(cross(a,b,b1)))
           c[k++] = Circle(a1,w);
        else
           c[k++] = Circle(b1,w);
    }
}

int Work()
{
    c[0] = Inverse(c[0]);
    c[1] = Inverse(c[1]);
    if(c[1].r > c[0].r) swap(c[1],c[0]);
    Point v = c[1].o - c[0].o;
    double alpha = atan2(v.y,v.x);
    double d = dist(c[0].o,c[1].o);
    double beta  = acos((c[0].r - c[1].r) / d);
    int k = 2;
    Point a = c[0].getPoint(alpha + beta);
    Point b = c[1].getPoint(alpha + beta);
    if(sign(cross(a,c[0].o,b)) == sign(cross(a,p,b)) &&
       sign(cross(a,c[1].o,b)) == sign(cross(a,p,b)))
        add(a,b,k);
    a = c[0].getPoint(alpha - beta);
    b = c[1].getPoint(alpha - beta);
    if(sign(cross(a,c[0].o,b)) == sign(cross(a,p,b)) &&
       sign(cross(a,c[1].o,b)) == sign(cross(a,p,b)))
        add(a,b,k);
    return k - 2;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        c[0].Input();
        c[1].Input();
        p.Input();
        int num = Work();
        printf("%d\n",num);
        for(int i=0;i<num;i++)
            c[i+2].Output();
    }
    return 0;
}



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ACdreamers/article/details/16966369
个人分类: 基础数学
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭