连分数求解Pell方程

如果我们求出Pell方程的最小正整数解后,就可以根据递推式求出所有的解。




则根据上式我们可以构造矩阵,然后就可以快速幂了。




这样就可以求出第k大的解。

HDU3292题就要用到上面的矩阵方法求第k大的解。

 

 

 

拓展一点:

(1)如果第n个三角数t等于m的平方,即,那么x=2n+1,y=m,就是丢番图方程的解。

 

(2)求丢番图方程的最小正整数解,其中d为非完全平方数的正整数。


 

题目:http://poj.org/problem?id=2427


题意:求方程x^2-N*y^2=1的最小正整数解。本题要用到高精度,所以用Java。


import java.math.BigInteger;  
import java.util.Scanner;  

public class Main
{  
    public static void solve(int n) 
    {  
        BigInteger N, p1, p2, q1, q2, a0, a1, a2, g1, g2, h1, h2,p,q;  
        g1 = q2 = p1 = BigInteger.ZERO;  
        h1 = q1 = p2 = BigInteger.ONE;  
        a0 = a1 = BigInteger.valueOf((int)Math.sqrt(1.0*n));
        BigInteger ans=a0.multiply(a0);
        if(ans.equals(BigInteger.valueOf(n)))
        {
        	System.out.println("No solution!");
        	return;
        }
        N = BigInteger.valueOf(n);  
        while (true) 
        {  
            g2 = a1.multiply(h1).subtract(g1);     
            h2 = N.subtract(g2.pow(2)).divide(h1);  
            a2 = g2.add(a0).divide(h2);          
            p = a1.multiply(p2).add(p1);           
            q = a1.multiply(q2).add(q1);          
            if (p.pow(2).subtract(N.multiply(q.pow(2))).compareTo(BigInteger.ONE) == 0) break;
            g1 = g2;h1 = h2;a1 = a2;  
            p1 = p2;p2 = p;  
            q1 = q2;q2 = q;  
        }
        System.out.println(p+" "+q);
    }  
   
    public static void main(String[] args) 
    {  
        Scanner cin = new Scanner(System.in);  
        while(cin.hasNextInt())
        {
            solve(cin.nextInt());   
        }
    }  
}  


 

 

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2281

 

题意:给出一个数N,求1到N的范围内,找到一个最大的n,满足,N最大达到10^18

 

分析:我们把上式写成,然后就是解Pell方程即可。

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Pell 方程是形如 $x^2-dy^2=1$ 的二元二次方程,其中 $d$ 是正整数,$x$ 和 $y$ 是正整数。求解 Pell 方程的一种经典方法是使用连分数。下面是求解 Pell 方程的步骤: 1. 首先,我们找到 Pell 方程的一个基本解 $(x_0,y_0)$,可以通过暴力枚举或使用其他方法来找到基本解。 2. 我们使用基本解 $(x_0,y_0)$ 来构造一个无限循环小数: $$\sqrt{d}=[a_0;\overline{a_1,a_2,\ldots,a_r,2a_0,\overline{a_1,a_2,\ldots,a_r,2a_0,\ldots}}]$$ 其中,$a_0=\lfloor\sqrt{d}\rfloor$,$a_i$ 是循环节中的数字。 3. 我们将这个无限循环小数表示为一个连分数: $$\sqrt{d}=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{\ldots+\frac{1}{2a_0+\frac{1}{a_1+\frac{1}{a_2+\ldots}}}}}}$$ 4. 我们使用连分数的递归公式,计算出前 $n$ 个连分数的值: $$\begin{aligned}&h_0=a_0, &k_0=1 \\ &h_1=a_0a_1+1, &k_1=a_1 \\ &h_i=a_ih_{i-1}+h_{i-2}, &k_i=a_ik_{i-1}+k_{i-2}\end{aligned}$$ 其中,$h_i$ 和 $k_i$ 分别表示连分数的第 $i$ 个逼近分数的分子和分母。 5. 我们可以证明,对于任意 $n$,$(h_n,k_n)$ 都是 Pell 方程的解。这是由连分数的性质所决定的。 6. 最终,我们可以得到 Pell 方程的所有正整数解 $(x,y)$,它们可以通过 $(x,y)=(x_0h_n+dy_0k_n,x_0k_n+y_0h_n)$ 来计算。 需要注意的是,如果循环节长度为奇数,则最后一个连分数的分母应该是 $2a_0$,否则应该是 $1$。此外,如果循环节长度为 $0$,则 $a_1$ 应该等于 $2a_0$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值