欧拉函数的实现
定义1 :设R是模n的的一个剩余类,若有 aϵR a ϵ R ,使得gcd(a,n)=1,则称R是n的一个简化剩余类。
定义2 :对于正整数k,令函数 φ(k) φ ( k ) 的值等于模k的所有简化剩余类个数,称 φ(k) φ ( k ) 为欧拉函数。
从直观上将,欧拉函数 φ(n) φ ( n ) 的值为[1,n-1]中与n互质的数字的个数。直接找与n互质的数字很难,因此可以转换思维,去找与n不互质的数字有多少个。因此算法步骤如下:
- 找出n的所有不重复的素因子
- 根据容斥定理求出有多少数字与n不互斥。令k为若干个素因子的积,则有 m=⌊n−1k⌋ m = ⌊ n − 1 k ⌋ 个数能被k整除,当k为奇数个素因子的积时,则总个数加m,否则总个数减m。
- 由于容斥定理需要遍历所有素因子的组合,因此,比如有3个素因子,则循环从1到111(二进制)就可以遍历所有组合情况。(其中某位为1表示对应的素因子参与计算。)
c++实现如下
int Euler(int n){
int r = n-1;
vector<int> p;
for(int i=2;i*i<=n;i++){
if (n%i==0){
p.push_back(i);
while(n%i==0) n/=i;
}
}
if (n>1) p.push_back(n);
int sum = 0;
for (int comb=1;comb<(1<<p.size());comb++){
int mul=1,count=0;
for (int i=0;i<p.size();i++){
if (comb&(1<<i)){
mul *= p[i];
count++;
}
}
int num = (r)/mul;
if (count&1) sum+=num;
else sum-=num;
}
return r-sum;
}