欧拉函数及其实现

背景介绍

在数论,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。此函数以其首名研究者欧拉命名(Euler’s totient function),它又称为Euler’s totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。

内容介绍

在这里插入图片描述

性质

积性函数:(预备知识)
积性函数指对于所有互质的整数a和b有性质f(a*b)=f(a) * f(b)的数论函数。
而对于任意的a和b都满足f(a * b)=f(a) * f(b)的函数为完全积性函数。

积性函数举例:
φ(n) -欧拉函数
μ(n) -莫比乌斯函数,关于非平方数的质因子数目
gcd(n,k) -最大公因子,当k固定的情况
d(n) -n的正因子数目
σ(n) -n的所有正因子之和
σk(n) - 因子函数,n的所有正因子的k次幂之和,当中k可为任何复数。
1(n) -不变的函数,定义为 1(n) = 1 (完全积性)
Id(n) -单位函数,定义为 Id(n) = n(完全积性)
Idk(n) -幂函数,对于任何复数、实数k,定义为Idk(n) = n^k (完全积性)
ε(n) -定义为:若n = 1,ε(n)=1;若 n > 1,ε(n)=0。别称为“对于狄利克雷卷积的乘法单位”(完全积性)
λ(n) -刘维尔函数,关于能整除n的质因子的数目
γ(n),定义为γ(n)=(-1)^ω(n),在此加性函数ω(n)是不同能整除n的质数的数目
另外,所有狄利克雷特征均是完全积性的

正题:

1,如果p是质数,那么φ ( p ) = p-1
2,若n是质数p的k次幂, φ ( p ) = pk - pk-1 = pk-1(p-1),因为除了p的倍数外,其他数都跟n互质
3,欧拉函数是积性函数,但不是完全积性函数,所以如果n和m互质,它满足上面的方程,φ(n*m)=f(n) * f(m)。当m = 2的时候,并且n为奇数,那么φ(2 * n)= φ(n)
4,当n大于2时,φ(n)为偶数
5,对于质数p
若n mod p=0 则φ(n∗p)=φ(n)∗p
若 n mod p != 0 则φ(n∗p)=φ(n)∗(p−1)

代码实现:
这里的代码用的是欧拉筛

#include <iostream>
#include <cstring> 

using namespace std;

const int MAX_N = 500001;

int main()
{
	int n, ans = 0;
	
	cin >> n;
	
	int vis[n];
	int prime[n], sum = n;
	
	memset(vis, 0, sizeof(vis));
	memset(prime, 0, sizeof(prime));
	
	for (int i=2; i<=n; i++)
	{
		if (!vis[i])
		{
			if (sum%i == 0)
			{
				n = n*(1-1.0/i);
			}
			
			vis[i] = 1;
			prime[++ans] = i;
		}
		
		for (int j=1; j<=ans && i*prime[j]<=n; j++)
		{
			vis[i*prime[j]] = 1;
			
			if (i%prime[j] == 0)
			{
				break;
			}
		}
	}

	cout << n << endl;
	
	return 0;
} 

线性筛
上面写的是求一个数的欧拉函数值,用的是欧拉筛,其实直接求质因数进行计算也行,不过如果题目要的是1到n区间内的欧拉函数值,上面的做法就不太行了。这时候就要用到了欧拉函数的性质。

我们知道
1)欧拉函数是积性函数,但不是完全积性函数,所以如果n和m互质,它满足上面的方程,φ(a*b)=f(a) * f(b)
2)对于质数p 若n mod p=0 则φ(n∗p)=φ(n)∗p ,若 n mod p != 0 则φ(n∗p)=φ(n)∗(p−1)

接下来的线性筛正是以这两个性质为基础实现的。看一下代码(phi就是φ的读音)

#include <iostream>

using namespace std;

const int MAX_N = 500001;
int ans = 0; 
int vis[MAX_N], phi[MAX_N], prime[MAX_N];
//标记, 欧拉函数值,素数 
void slove(int n)
{
	for (int i=2; i<=n; i++)
	{
		if (!vis[i])
		{
			prime[ans++] = i;
			phi[i] = i-1;
		}
		
		for (int j=0; j<ans && i*prime[j]<=n; j++)
		{
			vis[i*prime[j]] = 1;
			if (i%prime[j] == 0)
			{//上面1)的条件,这里prime[j]一定是素数,就看i和prime[j]的关系。
				phi[i*prime[j]] = phi[i]*prime[j];
				break;
			}
			else
			{
				phi[i*prime[j]] = phi[i]*(prime[j]-1);
			}
		}
	}
}

int main()
{
	int n;
	
	cin >> n;
	
	slove(n);
	
	for (int i=2; i<n; i++)
	{
		cout << phi[i] << endl;
	}
	
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值