POJ 3278:Catch That Cow 抓住那头牛
-
总时间限制:
- 2000ms 内存限制:
- 65536kB
-
描述
-
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
输入
- Line 1: Two space-separated integers: N and K 输出
- Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow. 样例输入
-
5 17
样例输出
-
4
提示
- The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
题目分析:
Finding the shortest path,采用广度搜索BFS的方法。
注意分析题目:
Farmer John 的位置是N, cow 牛的位置是 K;
action只有3种,+1,-1,*2; 没有 “除以2”。
所以当N>K,时,只能执行-1 action。 即 如N-K,最短steps= K-N。
当N<K时,
N>0; 可以执行-1 action。
N<K; 可以执行+1 action
2*N<K+parameter , 可以执行 *2 action。 //这里不太严谨,没有给出数学证明, parameter=MAX-K, 如下面代码所示。关键是给一个任意的N<K, N通过+1,*2 actions最多可以通过多少step到达K。
样例代码:
/* 广度优先搜索,重要的是剪枝和标记访问过的路径。 所谓的剪枝,也可以理解为生成每一个子节点的条件;所谓条件限制越严谨,剪枝效果越好。 */ #include <iostream> #include <cstring> #include <queue> using namespace std; const int MAX=100020; // 这个MAX的设定并不太严谨 int visited[MAX]={0}; int main() { int n,k; while (cin>>n>>k){ if( n > k ){ cout<<n-k<<endl; continue; } memset(visited,0,sizeof(visited)); queue<int> q; q.push(n); int t=0; while( !q.empty() ){ t = q.front(); q.pop(); if(t == k){ break; } if( t < k && !visited[t+1] ){ // 当t>k时,不执行+1 action q.push(t+1); visited[t+1] = visited[t] + 1; } if( t > 0 && !visited[t-1] ){ // q.push(t-1); visited[t-1] = visited[t] + 1; } if( 2*t < MAX && !visited[2*t] ){ //此处不太严谨,如上讨论 q.push(2*t); visited[2*t] = visited[t] +1; } } cout<<visited[t]<<endl; } return 0; }