很老的一道面试题,经典解法是用哈希表求解。如果不允许申请额外的存储空间,我能想到的就是用归并排序来搞,在归并的比较过程中删除重复元素,但成立的前提是允许改变原始链表元素的顺序。
用链表做归并排序有个方便的地方,就是不用像处理普通数组那样额外申请空间, 正好满足问题的附加条件。不方便的地方在于把规模n的问题分解为n/2子问题的时候,没法直接求得中点。简单粗暴的做法是分解问题时先遍历到中点,这样会增加n/2*logn的复杂度,凑合。
struct Node{
double v;
Node* next;
}; // 链表元素
// 合并2个有序的链表,顺带删除重复元素
static Node* mergeList(Node* pHead1,Node* pHead2)
{
Node* pHead = NULL;
Node* pTail =NULL;
while(pHead1 != NULL && pHead2 != NULL)
{
Node* pMin; // 需要一个临时变量保存当前的最小值
if(pHead1->v < pHead2->v)
{
pMin = pHead1;
pHead1 = pHead1->next;
}
else if(pHead1->v > pHead2->v)
{
pMin = pHead2;
pHead2 = pHead2->next;
}
else{ // 删除重复元素
Node* t = pHead2;
pHead2 = pHead2->next;
delete t;
continue; // 注意
}
if(pHead == NULL){
pHead = pMin;
pTail = pMin;
}
else{
pTail->next = pMin; // 注意要更新->next
pTail = pMin; // 更新合并后的链表尾
}
}
if(pHead==NULL){
pHead = (pHead1==NULL) ? pHead2 : pHead1;
}
else{
pTail->next = (pHead1==NULL) ? pHead2 : pHead1; // 注意是->next
}
return pHead;
}
// 第二个入参为链表的长度
static Node* mergeSort(Node* pHead, int size)
{
if(size == 1){ return pHead;}
int half = size/ 2;
Node* last = pHead; // 遍历到左边list的最后一个元素
for( int i = 0; i < half- 1;++i)
{
last = last->next;
}
Node* right = last->next;
last->next = NULL; // 分割链表前记得保存为right
mergeSort(pHead,half);
mergeSort(right,size-half);
return mergeList(pHead,right);
}
// 最外层的主函数
Node* deleteDups(Node* pHead)
{
if(pHead == NULL){ return NULL;}
int size= 0;
Node* t = pHead;
while(t != NULL)
{
++size;
t = t->next;
}
return mergeSort(pHead,size);
}
double v;
Node* next;
}; // 链表元素
// 合并2个有序的链表,顺带删除重复元素
static Node* mergeList(Node* pHead1,Node* pHead2)
{
Node* pHead = NULL;
Node* pTail =NULL;
while(pHead1 != NULL && pHead2 != NULL)
{
Node* pMin; // 需要一个临时变量保存当前的最小值
if(pHead1->v < pHead2->v)
{
pMin = pHead1;
pHead1 = pHead1->next;
}
else if(pHead1->v > pHead2->v)
{
pMin = pHead2;
pHead2 = pHead2->next;
}
else{ // 删除重复元素
Node* t = pHead2;
pHead2 = pHead2->next;
delete t;
continue; // 注意
}
if(pHead == NULL){
pHead = pMin;
pTail = pMin;
}
else{
pTail->next = pMin; // 注意要更新->next
pTail = pMin; // 更新合并后的链表尾
}
}
if(pHead==NULL){
pHead = (pHead1==NULL) ? pHead2 : pHead1;
}
else{
pTail->next = (pHead1==NULL) ? pHead2 : pHead1; // 注意是->next
}
return pHead;
}
// 第二个入参为链表的长度
static Node* mergeSort(Node* pHead, int size)
{
if(size == 1){ return pHead;}
int half = size/ 2;
Node* last = pHead; // 遍历到左边list的最后一个元素
for( int i = 0; i < half- 1;++i)
{
last = last->next;
}
Node* right = last->next;
last->next = NULL; // 分割链表前记得保存为right
mergeSort(pHead,half);
mergeSort(right,size-half);
return mergeList(pHead,right);
}
// 最外层的主函数
Node* deleteDups(Node* pHead)
{
if(pHead == NULL){ return NULL;}
int size= 0;
Node* t = pHead;
while(t != NULL)
{
++size;
t = t->next;
}
return mergeSort(pHead,size);
}