经典问题的算法与实现

版权声明:欢迎转载! https://blog.csdn.net/wangwenhao00/article/details/75193724

1。求最大公约数?
2。求最小公倍数?
3。给定一个正整数N,求 [2,N]中的所有素数
4。质因数分解
这是经典而常见的问题,利用算术基本定理很容易证明!
拓展:求N个数的最小公倍数?

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
using namespace std;

//最大公约数
int gcd(int a, int b) {
    if(b == 0) return a;
    else return gcd(b, a%b);
}
//最小公倍数
int lcm(int a, int b) {
    return a / gcd(a, b) * b;
}
//求一个数所有的约数
void produceDiv(int k) {
//O(n)的时间复杂度会超时
/*
    for(int i = 2; i < k; i++) {
        if(k%i == 0) {
            myHash[k].push_back(i);
        }
    }
*/
    vector<int> V;
    int mid = (int)sqrt(k)+1;
    for(int i = 2; i < mid; i++) {
        if(k%i == 0) {
            V.push_back(i);
            V.push_back(k/i);
        }
    }
    for(int i = 0; i < (int)V.size(); i++) {
        cout << V[i] << " ";
    }
    cout << endl;
}

int main()
{
    int a, b;
    while(scanf("%d%d", &a, &b) != EOF) {
        int res1 = gcd(a, b);
        int res2 = lcm(a, b);
        cout << res1 << " " << res2 << endl;
    }
    int k;
    while(cin >> k) {
        produceDiv(k);
    }
    return 0;
}

3。给定一个正整数N,求 [2,N]中的所有素数。
方法一:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 1000000;

bool valid[maxn];
//保存素数index=1开始
int ans[maxn];

void getPrime(int n, int &tot) {
    memset(valid, true, sizeof(valid));
    for(int i = 2; i <= n; i++) {
        if(valid[i]) {
            tot++;
            ans[tot] = i;
        }
        for(int j = 1; ((j <= tot) && (i*ans[j]<=n)); j++) {
           // printf("i = %d, j = %d, ans[j] = %d, i*ans[j] = %d\n", i, j,  ans[j], i*ans[j]);
            valid[i*ans[j]] = false;
            if(i%ans[j] == 0) {
            //    printf("%d / %d = 0\n", i, ans[j]);
                break;
            }
        }
    }
    //输出结果
    for(int i = 1; i <= tot; i++) {
        cout << ans[i] << " ";
    }
    cout << endl;
}

int main()
{
    int n;
    int tot = 0;
    cin >> n;
    getPrime(n, tot);
    return 0;
}

数组valid[i]记录i是否为素数, 初始化所有的valid[i] 都为true.从2开始从小到大枚举i, 若valid[i]=true,则从i*i开始的每一个i的倍数valid[i]设置为false.结束之后valid[i] = true的就是素数。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 1000000;

bool valid[maxn];
//保存素数index=1开始
int ans[maxn];

void getPrime(int n, int &tot) {
    memset(valid, true, sizeof(valid));
    tot = 0;
    int i, j;
    for(i = 2; i <= n; i++) {
        if(valid[i]) {
            if(n/i < i) break;
            for(j=i*i; j <= n; j+=i) {
                valid[j] = false;
            }
        }
    }
    for(i=2; i <= n; i++) {
        if(valid[i]) {
            ans[++tot] = i;
        }
    }
    for(i = 1; i <= tot; i++) {
        cout << ans[i] << " ";
    }
    cout << endl;
}

int main()
{
    int n;
    int tot;
    cin >> n;
    getPrime(n, tot);
    return 0;
}

4。质因数分解
给定一个整数N, 将N分解质因数
思路:N的质数要么是N本身(N是素数), 要么一定小于等于sqrt(N), 因此可用小于等于sqrt(N)的数对N进行试除 , 一直到不能除为止。这时候剩下的如果不是1,那就是N的最大的质因数。

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn = 1000;
/**
质因数分解
时间复杂度O(sqrt(n))
n:待分解的整数
&tot 不同质因数的个数
数组a  a[i] 表示第i个质因数
数组b  b[i] 表示第i个质因数的质数
**/

void factor(int n, int a[], int b[], int &tot) {
    int temp, i, now;
    temp = (int)((double)sqrt(n)+1);
    tot = 0;
    now = n;
    for(i = 2; i <= temp; ++i) {
        if(now%i == 0) {
            a[++tot] = i;
            b[tot] = 0;
            while(now%i == 0) {
                ++b[tot];
                now/=i;
            }
        }
    }
    if(now != 1) {
        a[++tot] = now;
        b[tot] = 1;
    }
}

int main()
{
    int n;
    int tot;
    int a[maxn];
    int b[maxn];
    cin >> n;
    factor(n, a, b, tot);
    cout << a[1] << "^" << b[1];
    for(int i = 2; i <= tot; i++) {
        cout << "+" <<  a[i] << "^" << b[i];
    }
    return 0;
}
阅读更多

没有更多推荐了,返回首页