5. 最长回文子串
题目描述
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: “babad”
输出: “bab”
注意: “aba” 也是一个有效答案。
示例 2:
输入: “cbbd”
输出: “bb”
思路
- 暴力法 先写一个判断是否为回文的函数,在通过两层循环 不断跌遍历出所有回文长度,记录最长回文。
- 动态规划方法 找出根据题意定位状态 d p [ i ] [ j ] dp[i][j] dp[i][j]表示区间为 [ i , j ] [i, j] [i,j]子串是否为回文。状态转移方程 d [ i ] [ j ] = d [ i + 1 ] [ j − 1 ] a n d s [ i ] = = s [ j ] d[i][j]=d[i+1][j-1] and s[i]==s[j] d[i][j]=d[i+1][j−1]ands[i]==s[j]表示当一个子串为回文,如果在其两端添加相同的字符,那么新子串任然为回文。
- 边界问题: 如果一个子串的长度小于2,那么其必为回文。所以二维动态数组dp对角线元素必为回文。以此为边界,填充dp表。
- 最后找出二维表中,最大长度的回文。
代码
string longestPalindrome(string s) {
int sz = s.length();
if(sz<2) return s;
vector<vector<bool>> dp(sz, vector<bool>(sz, false));
for(int i; i<sz; i++){
dp[i][i] = true;
}
int start = 0;
int maxL = 1;
for(int j = 1; j < sz; j++){
for(int i=0; i < j; i++){
// 判断是否为回文
if(s[i]==s[j]){
if(j-i<3) dp[i][j] = true;
else{
dp[i][j] = dp[i+1][j-1];
}
}
// 找出最大回文区间
if(dp[i][j]){
if(j-i+1>maxL){
start = i;
maxL = j-i+1;
}
}
}
}
return s.substr(start, maxL); // 返回最大回文
}