最长回文子串

5. 最长回文子串

题目描述

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: “babad”
输出: “bab”
注意: “aba” 也是一个有效答案。
示例 2:
输入: “cbbd”
输出: “bb”

思路

  1. 暴力法 先写一个判断是否为回文的函数,在通过两层循环 不断跌遍历出所有回文长度,记录最长回文。
  2. 动态规划方法 找出根据题意定位状态 d p [ i ] [ j ] dp[i][j] dp[i][j]表示区间为 [ i , j ] [i, j] [i,j]子串是否为回文。状态转移方程 d [ i ] [ j ] = d [ i + 1 ] [ j − 1 ] a n d s [ i ] = = s [ j ] d[i][j]=d[i+1][j-1] and s[i]==s[j] d[i][j]=d[i+1][j1]ands[i]==s[j]表示当一个子串为回文,如果在其两端添加相同的字符,那么新子串任然为回文。
  3. 边界问题: 如果一个子串的长度小于2,那么其必为回文。所以二维动态数组dp对角线元素必为回文。以此为边界,填充dp表。
  4. 最后找出二维表中,最大长度的回文。

代码

    string longestPalindrome(string s) {
        int sz = s.length();
        if(sz<2)  return s;

        vector<vector<bool>> dp(sz, vector<bool>(sz, false));

        for(int i; i<sz; i++){
            dp[i][i] = true;
        }

        int start = 0;
        int maxL = 1;

        for(int j = 1; j < sz; j++){
            for(int i=0; i < j; i++){

                // 判断是否为回文
                if(s[i]==s[j]){
                    if(j-i<3)  dp[i][j] = true;
                    else{
                        dp[i][j] = dp[i+1][j-1];
                    }
                }

                // 找出最大回文区间
                if(dp[i][j]){
                    if(j-i+1>maxL){
                        start = i;
                        maxL = j-i+1;
                    }
                }
            }
        }
        return s.substr(start, maxL);  // 返回最大回文
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值