共建智慧云基石,阿里云携手英特尔走向数智未来

从新基建到“上云用数赋智”行动,数字技术正以前所未有的速度和深度,深入到各行各业的数智化转型中,推动我们进入数智未来。

正如毕马威发布的《中国领先消费科技50企业报告》所说,中国商业正在由“消费红利”经济向“数智创新”经济进化。产业生态已从单节点效率提升,逐步进化为全生态重塑增长方式,“数智”技术正触发商业生态的全链路转型。

全链路的转型意味着全链路的数字化、智能化,这对于传统IT基础架构来说,无疑是一个全新的挑战。因此,在数智经济时代,传统IT基础设施向云基础设施的升级已经成为大势所趋。阿里云作为中国第一也是世界领先的云服务商,同样也在顺应这一趋势,通过技术创新打造硬核实力,为数智经济发展奠定基础。

与此同时,阿里云也与英特尔展开全面合作,并充分发挥英特尔在智能计算领域的优势,进一步强化云计算的技术创新。英特尔市场营销集团副总裁、中国区总经理王锐表示,如今,双方的合作可以用四个字来总结:早,大,深,广。即新技术引入的时间早,使用的规模大,合作的程度深,合作范围非常广——已经覆盖电商、云计算、AIoT、大数据/AI、奥运会、5G、区块链等多个领域。其中,在云基础设施层面,双方正在共同构建智慧云基石,引领数智“芯”未来。

聚焦数智“芯” ,打造智慧云基石

云计算从诞生至今已经走过十五个年头,但大量应用在使用云的方式上依旧停留在传统IDC时代,比如虚拟机代替了原来的物理机,没有经过架构改造的应用上云,传统的应用打包与发布方式等等,这些做法虽然没错,但不能从云计算中获得更高的可用性与可扩展能力,不能利用云提升发布和运维的效率。

云原生架构,就是为了解决这些问题而生,它让业务更敏捷、成本更低的同时,又可伸缩性更灵活,可以充分释放云计算的技术红利。阿里云在为企业提供云服务过程中,也充分意识到了这一点,并以自身实践以及大量客户服务经验为核心,形成了独有的云原生架构设计方法——ACNA(Alibaba Cloud Native Architecting)。

不仅如此,顺应云时代系统软件技术的发展,面对开源生态面临的机遇和挑战,阿里云还重磅发布了操作系统开源社区,倡导和业界共建一个开放、合作、共赢的操作系统软件开源社区。

但要推动云原生在行业应用中的落地,有几个核心问题必须要解决:安全性、可靠性、性能、连续性等等。阿里云在云原生架构设计中也充分考虑到了这一点,并通过与英特尔的合作,从芯片、架构、软件等多个层面出发,对云原生技术不断强化。

针对云原生的安全性问题,阿里云引入了基于沙箱技术运行的容器服务——沙箱容器技术,并通过与英特尔的合作,基于Kata Containers和Cloud Hypervisor持续推动沙箱容器技术演进,利用沙箱容器提供的轻量、高效和敏捷的算力,充分释放云的弹性,真正做到安全性与性能的兼顾。

如果说沙箱容器技术是对应用运行进行安全隔离,那么加密计算技术则是从芯片层为数据处理进行加密。据了解,早在2017年,阿里云就与英特尔联合发布了基于芯片级的SGX加密计算技术(即机密计算技术),用最前沿的技术保障云上客户数据安全,并通过开源加密计算容器提升开发效率、降低使用成本,让英特尔SGX技术“飞入寻常百姓家”。

基于英特尔SGX技术,阿里云为云上客户提供了系统运行时的可信能力,云上开发者可以利用SGX技术提供的可信执行环境,将内存中的关键代码和数据保护起来,即使具备更高特权的系统组件包括BIOS、虚拟化底层、操作系统内核,以及高特权进程也都无法获得关键代码和数据,让客户可以摆脱对云平台的依赖,通过拥有云上的可信执行环境,防止数据被窃取或被篡改。

随着容器部署密度的越来越高,为了进一步提升容器部署性能,阿里云未来还将继续与英特尔开展深入合作,从芯片、硬件、软件等多个层面出发,不断夯实云计算服务能力,共同打造智慧云基石。

比如,阿里云借助英特尔资源调配技术(英特尔 RDT) 框架,可以跟踪和控制平台上同时运行的多个应用程序、容器或VM使用的共享资源,减少性能干扰、确保复杂环境下关键工作负载的性能,既保障用户SLA,又提升了硬件资源利用率;而通过深挖英特尔傲腾持久内存潜力,阿里云在提升内存密集型负载密度的同时,还能够确保计算的速度和效率也不受影响。

此外,今年6月阿里云服务器ECS发布的第七代高主频实例,更是集成了第三代英特尔至强处理器,具备DL boost的深度学习加速指令,可支持INT8以及BF16在AI场景中的实现,其中BF16加速指令可有效增加AI训练以及推理的能力。

而阿里云智能计算平台(PAI)则通过在最新的第三代英特尔至强可扩展处理器平台cooperlake上进行BF16指令级别的优化,使训练和推理的场景都有了不错的性能增长。PAI Blade作为阿里巴巴自研的通用推理优化框架,可通过模型系统联合优化达到最优的推理性能;最新的PAI blade 2.0会增加CPU优化支持, 将覆盖更多的模型善用其资源灵活性和可用性, 适用于轻量级模型。

未来,阿里云智能计算平台将通过与英特尔在技术上的持续深入合作,不断提升AI平台的通用、高效和领先性,在通过软硬件结合充分发挥CPU平台AI最高能效的同时,不断扩展PAI所支持的应用场景及其PaaS服务特性。

智能边缘崛起,共同开发杀手级应用

云计算的普及和深入应用,不仅带来了云原生这样的新技术和新趋势,也推动了智能边缘的崛起;尤其是5G、物联网技术的普及,更加速了这一进程。

如果说互联网实现了人与人的连接,人们可以随时随地利用云端提供的计算资源、存储资源及应用资源,来实现资源利用最大化;物联网则实现了物与物连接,并催生出大量数据,数据的增加则进一步推动了计算模式的创新,越来越多数据需要在边缘进行处理。

为了加速智能边缘的落地,英特尔也提出了物联网战略:第一,为物联网定制高性能的计算及加速芯片;第二,促进边缘计算负载整合的技术发展方向,抓住边缘计算的良好机遇;第三,专注于计算机视觉。

与此同时,阿里云也在积极探索物联网技术的发展和应用。早在2018年,阿里云IoT就宣布与英特尔在物联网领域达成深度合作,双方通过整合各自在云以及边缘计算上的能力,结合英特尔在硬件以及阿里云IoT在物联网平台上的优势,为全球企业带来了云边一体化边缘计算产品,可针对工业制造、智慧楼宇、智慧小区等不同业务场景,制定专属物联网解决方案,加速物联网技术的落地应用。

在物联网市场中,智能设备、传感器和互联事物捕捉的视频占有近一半的份额,因此如何利用人工智能技术深入挖掘视频数据的潜在价值,将成为推动物联网发展的一个主要驱动力。为了更好地解决视觉需求指数级增长带来的一系列问题,并同时进一步探索视觉领域的巨大商机,2019年,阿里云IoT通过与英特尔的合作,推出了视频边缘智能服务产品Link Visual 2.0。

阿里云Link Visual 2.0在硬件方面支持英特尔提供的由高性能处理芯片和人工智能硬件加速产品组成的异构计算架构,在软件层面则集成了英特尔面向计算机视觉和深度学习开发人员推出的OpenVINO工具包,不仅为泛视频行业的数字化和智能化转型提供了更便捷的云服务,同时也为拓宽视频应用提供了更广阔的想象空间。

目前,阿里云正在与英特尔共同探讨基于视觉云的应用解决方案,并运用到AIoT的产品上。其中,英特尔至强处理器和Intel server GPU异构架构的高性能计算、渲染、编解码和虚拟化技术的强大能力可以充分满足阿里云云化应用的需求,实践云边端一体化的可行性,并打造全新的客户体验。

不久前,阿里云IoT、天猫精灵正式联合成立AIoT创新中心,通过整合阿里巴巴包括达摩院在内的技术能力,全面赋能AIoT行业。据了解,AIoT创新中心的成立将帮助中小家电制造企业更低成本实现智能化升级,成为全行业的“加速器”,并面向未来5G和AIoT时代进行产品研发和技术探索。

数智化变革,构建生态才能行稳致远

如今,随着5G、人工智能等技术的加速应用,整个社会都在面临着数据化、智能化的全新变革。王锐认为,在变革面前,传统的IT技术架构已经不再能够满足需求。面对这样的趋势,仅靠某一方面的实力是远远不够的,真正需要的是全面的综合实力。英特尔恰好拥有着构建全面的产品领导力、解决方案创新力和生态构建力的优势,可以以全能冠军的实力帮助客户行稳致远。

事实上,在阿里云联合英特尔共同为各行各业数智化转型打造智慧云基石过程中,双方不仅在软硬件产品层面已经展开全面合作,同时也在共同建设推动数智经济发展的生态体系。具体来说,双方着重通过两个计划加速技术创新转化为客户价值:领航员计划和数字革新加速计划。

在领航员计划中,阿里云将与英特尔一道,提供公有云线上环境、弹性裸金属服务器,并基于英特尔傲腾持久内存等最新的软件及硬件技术,为万众创新赋能。其中,阿里云推出的基于持久化内存增强型实例,主要致力于大规模数据处理的内存密集型应用,在大幅度降低用户成本的同时,保持性能不变,具备超高的性价比。

早在两年前,阿里云就与英特尔在持久内存领域进行合作,也是中国首家把英特尔傲腾数据中心级持久内存(AEP)应用于双十一的产品。今年9月,阿里云Tair基于英特尔AEP的自研引擎,并结合神龙裸金属服务器和云原生数据库管理系统,推出了Tair持久内存版。该版本在能力上可完全覆盖Redis,相对于开源自建的内存版本Redis,Tair持久内存版吞吐是90%,而成本降低了30%。

目前,第二届Tair性能挑战数据库大赛开赛在即,此次大赛也是希望基于像英特尔AEP这样的技术和产品,去打造和研发下一代云原生缓存、云原生内存数据库。同时,通过此次大赛,在阿里云神龙裸金属服务器上的持久内存存储介质,可以让参赛者接触到最新技术、最新软硬件一体化设计的理念、云原生的理念,以及内存数据库发展的最新趋势。

如果说领航员计划是实现从0到1的产品孵化,那么数字革新加速计划则是实现从1到100的规模化部署。在数字革新加速计划中,英特尔已经为多个客户全面应用阿里云给予多方面的支持,比如降低企业客户和ISV/SI/MSP行业合作伙伴部署创新产品的门槛,提供PoC资源、技术支持和市场资源等。随着行业数字化转型的加速,英特尔还将与阿里云共同拓展更多的行业,为更多企业上云提供助力。

沪江教育作为一家领先的教育科技公司,已经通过将全部业务迁移到云上,加速拥抱创新的数字化技术。据了解,基于第二代英特尔至强可扩展处理器的阿里云第六代云服务器,满足了沪江教育在性能、成本和扩展性等方面的需求。

而申通快递作为首个全面上云的快递企业,目前包括订单平台、巴枪系统等核心业务系统都已稳定运行在阿里云上,云上日处理订单量近3000万。申通快递采用了基于第二代英特尔至强可扩展处理器的阿里云平台之后,不仅每天订单的处理能力倍增,也带动了申通快递的业务成长,切实享受了技术转型所带来的红利。

从聚焦数智“芯”构建云原生架构,激发云计算应用价值;到构建智能边缘,共同探索AIoT创新应用;再到构建数智化变革新生态。阿里云与英特尔的合作,已经不仅仅体现在产品、技术和解决方案层面,而是通过构建智慧云基石逐渐深入到行业的数智化转型中去,成为推动数据化、智能化变革的新引擎。(文/36氪)

手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。 课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程中出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。 基本提纲: 1、课程综述、环境配置 2、OpenVINO范例-超分辨率(super_resolution_demo) 3、OpenVINO范例-道路分割(segmentation_demo) 4、OpenVINO范例-汽车识别(security_barrier_camera_demo) 5、OpenVINO范例-人脸识别(interactive_face_detection_demo) 6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo) 7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo) 8、NCS和GOMFCTEMPLATE 9、课程小结,资源分享
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页