hdu 1874 畅通工程续

Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u

[]   [Go Back]   [Status]  

Description

某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。 

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 

Input

本题目包含多组数据,请处理到文件结束。 
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。 
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 

Output

对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1. 
 

Sample Input

    
    
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
 

Sample Output

    
    
2 -1
 

Source

2008浙大研究生复试热身赛(2)――全真模拟





下面给出四种不同算法解决这个问题:

dijkstra算法求最短路问题,代码如下:

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxm=0xfffffff;//让maxm=inf(一个很大的数),此处如果用max发生关键字冲突
const int maxn=200+5;
int map[maxn][maxn],vis[maxn],dist[maxn];
int n,m,sp,ep;
void getmap()
{
    int i,j,a,b,c;
    memset(vis,0,sizeof(vis));
    for(i=0;i<n;i++)
    dist[i]=maxm;//距离的初始值都设置为无穷大,得到各个孤立的点,互相之间没有边联系
    for(i=0;i<n;i++)
    for(j=0;j<n;j++)
    map[i][j]=(i==j?0:maxm);//如果是不同的点,最短路设置为无穷大;如果是相同的点,最短路设置为0。其实此处直接map[i][j]=maxm也可以。但是前者更符合逻辑
    for(i=0;i<m;i++)
    {
        scanf("%d%d%d",&a,&b,&c);
        map[a][b]=map[b][a]=map[a][b]<c?map[a][b]:c;//得到两点之间的最短路,两个地方之间可能不止一条双向道路
    }
}


void dij()
{
    int i,cur,next,min;
    dist[sp]=0;//起点最短路设置为0
    cur=sp;//当前为起点
    while(1)
    {
        vis[cur]=1;
        min=maxm;
        for(i=0;i<n;i++)
        {
            if(vis[i]==1) continue;//此处可以解释为什么直接map[i][j]=maxm也可以。(如果是同个点,会被跳过)
            if(dist[i]-map[i][cur]>dist[cur])
            dist[i]=map[i][cur]+dist[cur];//如果某点最短路大于该点到cur点的最短路+cur点的最短路,让该点的最短路等于后者的和。重点地方,注意理解!!
            if(dist[i]<min)//如果某个点的最短路小于当前最短路,替换之,并将next改成这个点的下标
            {
                min=dist[i];
                next=i;
            }
        }
        cur=next;
        if(cur==ep) break;//若能到达终点,结束
        if(min==maxm) break;//若不能到达终点,也结束,此时最短路为无穷大
    }
    printf("%d\n",dist[ep]==maxm?-1:dist[ep]);
}
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        getmap();
        scanf("%d%d",&sp,&ep);
        dij();
    }
    return 0;
}






floyd算法:

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxm=0xfffffff;//让maxm=inf(一个很大的数),此处如果用max发生关键字冲突
const int maxn=200+5;
int map[maxn][maxn];
int n,m,sp,ep;
void getmap()
{
    int i,j,a,b,c;
    //memset(vis,0,sizeof(vis));
    //for(i=0;i<n;i++)
    //dist[i]=maxm;//距离的初始值都设置为无穷大,得到各个孤立的点,互相之间没有边联系
    for(i=0;i<n;i++)
    for(j=0;j<n;j++)
    map[i][j]=(i==j?0:maxm);//如果是不同的点,最短路设置为无穷大;如果是相同的点,最短路设置为0
    for(i=0;i<m;i++)
    {
        scanf("%d%d%d",&a,&b,&c);
        map[a][b]=map[b][a]=map[a][b]<c?map[a][b]:c;//得到两点之间的最短路,注意体会
    }
}

void floyd()//记住这种写法
{
    int i,k,j;
    for(i=0;i<n;i++)
    for(j=0;j<n;j++)
    for(k=0;k<n;k++)
    map[j][k]=min(map[j][k],map[j][i]+map[i][k]);//重点
    printf("%d\n",map[sp][ep]==maxm?-1:map[sp][ep]);
}
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        getmap();
        scanf("%d%d",&sp,&ep);
        floyd();
    }
    return 0;
}





最短路的Floyd算法,这个就简单得多了,就是在整个图中扫描,看点 i 到 j 的距离和(点 i 到点 k 的距离)+(点 k 到点 j 的距离)两者哪个较小,把小的存入map[i][j]中即可。Floyd算法优势在于可以处理负边权的图,而且函数计算的是图中任意两点间的最短路;但其效率不高,空间开销较大,对于密集点图较为实用。





Bellman-Ford算法:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxx=0xfffffff;
const int maxn=2000+5;
const int maxm=200+5;
int n,m,sp,ep;
int dist[maxm];
struct Map
{
   int x,y,w;
}map[maxn];
void getmap()
{
    int i;
    for(i=0;i<m;i++)
    {
        scanf("%d%d%d",&map[i].x,&map[i].y,&map[i].w);
        map[i+m].x=map[i].y;
        map[i+m].y=map[i].x;
        map[i+m].w=map[i].w;
    }
}


void Bellman_Ford()
{
   int i,j;
   for(i=0;i<n;i++)
   dist[i]=maxx;
   dist[sp]=0;
   for(i=0;i<n;i++)
   for(j=0;j<2*m;j++)
   dist[map[j].x]=min(dist[map[j].x],dist[map[j].y]+map[j].w);
   //每次松弛,至少可以多得到一个点到源点的最短路,且所有边都会被遍历
   //if(dist[map[j].x]>dist[map[j].y]+map[j].w)
   //dist[map[j].x]=dist[map[j].y]+map[j].w;
   printf("%d\n",dist[ep]==maxx?-1:dist[ep]);
}




int main()
{
    int i,j;
    while(scanf("%d%d",&n,&m)!=EOF)//坑爹的hdu,没有!=EOF居然Time Limit Exceeded
    {
        getmap();
        scanf("%d%d",&sp,&ep);
        Bellman_Ford();
    }
    return 0;
}



Bellman-Ford基本思想:
即进行不停地松弛
每次松弛把每条边都更新一下
每次松弛操作,一定可以多确定一个点到源点的最短路
若n-1次松弛后还能更新?
则说明图中有负环!




SPFA算法,代码:

#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=205;
const int inf=0xfffffff;
int cost[maxn],visit[maxn],map[maxn][maxn],q[maxn];
int n,m,sp,ep;
void getmap()
{
  int i,j,a,b,c;
  for(i=0;i<n;i++)
  for(j=0;j<n;j++)
  map[i][j]=inf;
  //for(i=0;i<n;i++)
  //map[i][i]=0;//这两行可以不用(但为了逻辑清晰,还是加上好,毕竟只有一重循环)
  for(i=0;i<m;i++)
  {
      scanf("%d%d%d",&a,&b,&c);
      map[a][b]=map[b][a]=min(map[a][b],c);
  }
}


void spfa()
{
    int front=0,rear=0,i,j,x;
    q[++rear]=sp;//q从下标1开始
    memset(visit,0,sizeof(visit));
    visit[sp]=1;
    for(i=0;i<n;i++)
    cost[i]=inf;
    cost[sp]=0;
    while(front!=rear)
    {
        front=(front+1)%(n+1);//保证q从1到n
        x=q[front];
        visit[x]=0;//设置出队的点为未标志
        for(i=0;i<n;i++)
          if(cost[i]>cost[x]+map[i][x])//如果松弛成功
          {
              cost[i]=cost[x]+map[i][x];//更新路径,得到新的权值(新的最短路)
              if(!visit[i])//如果未被标志,即未入队
              {
                  rear=(rear+1)%(n+1);
                  q[rear]=i;//入队
                  visit[i]=1;//更新标志
              }
          }
    }
   printf("%d\n",cost[ep]==inf?-1:cost[ep]);
}


int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        getmap();
        scanf("%d%d",&sp,&ep);
        spfa();
    }
    return 0;
}




算法步骤:
用数组d记录每个结点的最短路径估计值
设立一个队列用来保存待优化的结点
优化时每次取出队首结点u
用d[u]来对离开u指向的节点v进行松弛操作
如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾
不断从队列中取出结点来进行松弛操作,直至队列空为止



附录:

  1. /* 
  2. 编辑本段SPFA算法 
  3.   求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm。   SPFA算法是西南交通大学段凡丁于1994年发表的.   从名字我们就可以看出,这种算法在效率上一定有过人之处。  
  4.  
  5.   很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。   简洁起见,我们约定有向加权图G不存在负权回 
  6.  
  7. 路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点。   我们用数组d记录每个结点的最短路径估计值,而且用邻接表来 
  8.  
  9. 存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v 
  10.  
  11. 点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。   定理: 只要最短路径存在,上述SPFA算法必定能求出最 
  12.  
  13. 小值。   证明:每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路, 
  14.  
  15. 所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。(证毕)   期望的时间 
  16.  
  17. 复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。   实现方法:建立一个队列,初始时队列里只有起始点,在建立一个表格记录起始点到所有点的最短路径(该表格的初 
  18.  
  19. 始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点去刷新起始点到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队 
  20.  
  21. 列为空   判断有无负环:如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图) 
  22. */  
  23.   
  24.   
  25. // 该注意的是有些点可能重复入队,所以出队的点也要重新置未标记  
  26.   

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园建设方案旨在通过融合先进技术,如物联网、大数据、人工智能等,实现校园的智能化管理与服务。政策的推动和技术的成熟为智慧校园的发展提供了基础。该方案强调了数据的重要性,提出通过数据的整合、开放和共享,构建产学研资用联动的服务体系,以促进校园的精细化治理。 智慧校园的核心建设任务包括数据标准体系和应用标准体系的建设,以及信息化安全与等级保护的实施。方案提出了一站式服务大厅和移动校园的概念,通过整合校内外资源,实现资源共享平台和产教融合就业平台的建设。此外,校园大脑的构建是实现智慧校园的关键,它涉及到数据中心化、数据资产化和数据业务化,以数据驱动业务自动化和智能化。 技术应用方面,方案提出了物联网平台、5G网络、人工智能平台等新技术的融合应用,以打造多场景融合的智慧校园大脑。这包括智慧教室、智慧实验室、智慧图书馆、智慧党建等多领域的智能化应用,旨在提升教学、科研、管理和服务的效率和质量。 在实施层面,智慧校园建设需要统筹规划和分步实施,确保项目的可行性和有效性。方案提出了主题梳理、场景梳理和数据梳理的方法,以及现有技术支持和项目分级的考虑,以指导智慧校园的建设。 最后,智慧校园建设的成功依赖于开放、协同和融合的组织建设。通过战略咨询、分步实施、生态建设和短板补充,可以构建符合学校特色的生态链,实现智慧校园的长远发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值