Write a program to solve a Sudoku puzzle by filling the empty cells.
Empty cells are indicated by the character '.'
.
You may assume that there will be only one unique solution.
A sudoku puzzle...
...and its solution numbers marked in red.
Subscribe to see which companies asked this question
分析:
做了这道题,对backtracking的理解又加深了一点点。
1 每个backtracking的题目,最好都有独立判断isValid的程序,这样架构清楚。同时,valid判断函数在这里可以稍微研究一下。只要当前要判断的位置上的数值和本行没有重复,本列没有重复,九宫格没有重复就可以。一旦重复立即返回,减少判断次数。
2 backtracking的递归函数,怎么能没有返回值呢?!因为要判断递归的方案正确与否,所以这里的递归一定是有返回值的(除非是combination那种没有正确错误概念的backtracking)!
3 可以考虑“先放置,再判断”的方案。比如这里,首先判断当前位置是否为空,如果为空,那么放置一个元素,检查它是否正确。如果正确,就继续进行下面的递归(也就是第29行 isValid&&solveSudoku的作用)。当函数返回错误之后,将刚刚的数值变为空,再进行下一次尝试即可。
4 所有的方案(k从1到9)完毕之后,应该返回错误,这个是不应该被忽略的。
5 最后一点需要注意的是,当i,j循环完毕之后,第36行应该返回true。这里实际上是最终/最底层的一次循环,表明已经解出了sudoku,返回true!切记切记,最终情况!
ac代码:
class Solution {
public:
bool solveSudoku(vector<vector<char>>& board) {
int i,j,k;
for(i=0;i<9;i++)
{
for(j=0;j<9;j++)
{
if(board[i][j]=='.')
{
for(k=1;k<=9;k++)
{
board[i][j]=k+'0';
if(check(board,i,j)&&solveSudoku(board))
return true;
board[i][j]='.';
}
return false;
}
}
}
return true;
}
bool check(vector<vector<char>>& board,int x,int y)
{
int i,j,k;
for(i=0;i<9;i++)
if(i!=x&&board[i][y]==board[x][y])
return false;
for(j=0;j<9;j++)
if(j!=y&&board[x][j]==board[x][y])
return false;
for(i=(x/3)*3;i<(x/3+1)*3;i++)
for(j=(y/3)*3;j<(y/3+1)*3;j++)
if(i!=x&&j!=y&&board[i][j]==board[x][y])
return false;
return true;
}
};