T9
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 2457 Accepted Submission(s): 909
This led manufacturers of mobile phones to try and find an easier way to enter text on a mobile phone. The solution they developed is called T9 text input. The "9" in the name means that you can enter almost arbitrary words with just nine keys and without pressing them more than once per character. The idea of the solution is that you simply start typing the keys without repetition, and the software uses a built-in dictionary to look for the "most probable" word matching the input. For example, to enter "hello" you simply press keys 4, 3, 5, 5, and 6 once. Of course, this could also be the input for the word "gdjjm", but since this is no sensible English word, it can safely be ignored. By ruling out all other "improbable" solutions and only taking proper English words into account, this method can speed up writing of short messages considerably. Of course, if the word is not in the dictionary (like a name) then it has to be typed in manually using key repetition again.
Figure 8: The Number-keys of a mobile phone.
More precisely, with every character typed, the phone will show the most probable combination of characters it has found up to that point. Let us assume that the phone knows about the words "idea" and "hello", with "idea" occurring more often. Pressing the keys 4, 3, 5, 5, and 6, one after the other, the phone offers you "i", "id", then switches to "hel", "hell", and finally shows "hello".
Write an implementation of the T9 text input which offers the most probable character combination after every keystroke. The probability of a character combination is defined to be the sum of the probabilities of all words in the dictionary that begin with this character combination. For example, if the dictionary contains three words "hell", "hello", and "hellfire", the probability of the character combination "hell" is the sum of the probabilities of these words. If some combinations have the same probability, your program is to select the first one in alphabetic order. The user should also be able to type the beginning of words. For example, if the word "hello" is in the dictionary, the user can also enter the word "he" by pressing the keys 4 and 3 even if this word is not listed in the dictionary.
Each scenario begins with a line containing the number w of distinct words in the dictionary (0<=w<=1000). These words are given in the next w lines. (They are not guaranteed in ascending alphabetic order, although it's a dictionary.) Every line starts with the word which is a sequence of lowercase letters from the alphabet without whitespace, followed by a space and an integer p, 1<=p<=100, representing the probability of that word. No word will contain more than 100 letters.
Following the dictionary, there is a line containing a single integer m. Next follow m lines, each consisting of a sequence of at most 100 decimal digits 2-9, followed by a single 1 meaning "next word".
For every number sequence s of the scenario, print one line for every keystroke stored in s, except for the 1 at the end. In this line, print the most probable word prefix defined by the probabilities in the dictionary and the T9 selection rules explained above. Whenever none of the words in the dictionary match the given number sequence, print "MANUALLY" instead of a prefix.
Terminate the output for every number sequence with a blank line, and print an additional blank line at the end of every scenario.
2 5 hell 3 hello 4 idea 8 next 8 super 3 2 435561 43321 7 another 5 contest 6 follow 3 give 13 integer 6 new 14 program 4 5 77647261 6391 4681 26684371 77771
Scenario #1: i id hel hell hello i id ide idea Scenario #2: p pr pro prog progr progra program n ne new g in int c co con cont anoth anothe another p pr MANUALLYMANUALLY
题意:
给出已知的单词还有数目,然后输入一串数字,求从输入第一个数字开始到最后一个数字的过程中最有可能出现的结果。
很明显,在字典树的模板上面修改下,用深搜去遍历几个数字组合成的所有可能,最后求出最有可能出现的,就是结果。
记得没昨晚一组数据要释放...因为这里数据量比较小所以我偷了下懒,每次都重新申请空间,一样是AC了。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef struct Tree { struct Tree *next[26]; int v; }; Tree *root; int maxn; int dis[10][4]= {-1,-1,-1,-1,-1,-1,-1,-1,0,1,2,-1,3,4,5,-1,6,7,8,-1,9,10,11,-1, 12,13,14,-1,15,16,17,18,19,20,21,-1,22,23,24,25 }; char f[110]; char g[110]; void update(char *a,int m) { Tree *p=root,*q; int len=strlen(a); for(int i=0; i<len; i++) { int k=a[i]-'a'; if(p->next[k]==NULL) { q=new Tree; for(int j=0; j<26; j++) q->next[j]=NULL; q->v=0; p->next[k]=q; } p=p->next[k]; p->v+=m; } } void finds(int k,int e,char *a) { if(k==e+1) { Tree *p=root; for(int l=0; l<=e; l++) { int j=f[l]-'a'; if(p->next[j]==NULL) return; p=p->next[j]; } if((p->v)>maxn) { maxn=p->v; for(int l=0; l<=e; l++) g[l]=f[l]; g[e+1]='\0'; } } int j=a[k]-'0'; for(int i=0; i<4; i++) { if(dis[j][i]!=-1) { f[k]='a'+dis[j][i]; finds(k+1,e,a); } } } int main() { int T,n,m,l; char op[110]; scanf("%d",&T); for(int w=1; w<=T; w++) { root=new Tree; for(int i=0; i<26; i++) root->next[i]=NULL; root->v=0; printf("Scenario #%d:\n",w); scanf("%d",&n); while(n--) { scanf("%s %d",op,&m); update(op,m); } scanf("%d",&l); while(l--) { scanf("%s",op); for(int i=0; op[i]!='1'; i++) { maxn=-999999; finds(0,i,op); if(maxn==-999999) { for(int j=i; op[j]!='1'; j++) printf("MANUALLY\n"); break; } else printf("%s\n",g); } printf("\n"); } printf("\n"); } return 0; }