Hopcroft-Karp算法模板(匈牙利算法的优化版本)

本文深入探讨了Hopcroft-Karp算法,它是解决最大匹配问题的一种高效方法,特别适用于图的稀疏情况。作为匈牙利算法的优化版本,它通过深度优先搜索和广度优先搜索的结合,提高了求解速度。文章详细阐述了算法的步骤、核心思想以及在ACM竞赛和HDU在线评测系统中的应用。
摘要由CSDN通过智能技术生成


struct Edge
{
    int v,next;
}edge[N*N];

int cnt,head[N];
int xline[N],yline[N],dy[N],dx[N];///xline表示与x配对的y编号,yline表示与y配对的x编号,dy,dx表示在各自集合里的编号
int vis[N],dis;

void addedge(int u,int v)
{
    edge[cnt].v=v;
    edge[cnt].next=head[u];
    head[u]=cnt++;
}
void init()
{
    cnt=0;
    memset(head,-1,sizeof(head));
    memset(xline,-1,sizeof(xline));
    memset(yline,-1,sizeof(yline));
}
int bfs()
{
    queue<int>que;
    dis=INF;
    memset(dx,-1,sizeof(dx));
    memset(dy,-1,sizeof(dy));
    for(int i=1;i<=m;i++)
    {
        if(xline[i]==-1)
        {
            que.push(i);
            dx[i]=0;
        }
    }
    while(!que.empty())
    {
        int u=que.front();que.pop();
        if(dx[u]>dis) break;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v = edge[i].v;
            if(dy[v] == -1)
         
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值