1755: 阶数
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 54 Solved: 6
[ Submit][ Status][ Web Board]
Description
满足a^x≡1(mod n)的最小正整数x称为a模n的阶。
现给出两个正整数,求x。
Input
第一行输入k,表示有k组数据
之后k行每行两个数a,n(2<=a,n<=10^9)
Output
对于每组输入,用一行输出x的值,若不存在输出-1
Sample Input
2
2 3
2 4
Sample Output
2
-1
题意:中文题不解释
思路:欧拉定理:
设gcd(a,m)=1,必有正整数x,使得a^x=1(mod m),且设满足等式的最小正整数为x0,必满足x0|phi(m).注意m>1.
否则如果gcd(a,m)!=1,则方程a^x=1(mod m)没有解。
所以我们先判断a和n是不是互质,如果不是直接输出-1
互质一定有解,我们求出n的欧拉函数然后枚举因子即可。
有一个坑的地方卡了好久,就是因为你枚举出来的因子最小为2
所以需要特判一下a%n==1
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define LL long long
LL e[1000008],t;
LL pow_mod(LL a,LL n,LL mod)
{
LL ans=1;
while(n)
{
if(n&1) ans=ans*a%mod;
a=a*a%mod;
n>>=1;
}
return ans;
}
LL gcd(LL a,LL b)
{
return b?gcd(b,a%b):a;
}
LL euler_phi(LL n)//欧拉函数
{
LL ans=n,i;
for(i=2; i*i<=n; i++)
{
if(n%i==0)
{
ans=ans/i*(i-1);
while(n%i==0)n=n/i;
}
}
if(n>1)ans=ans/n*(n-1);
return ans;
}
void finds(LL n)
{
e[t++]=n;
for(LL i=2; i*i<=n; i++)
{
if(n%i==0)
{
if(i*i==n)
e[t++]=i;
else
{
e[t++]=i;
e[t++]=n/i;
}
}
}
}
int main()
{
int T;
LL a,n;
scanf("%d",&T);
while(T--)
{
scanf("%lld %lld",&a,&n);
if(a%n==1)
{
printf("1\n");
continue;
}
if(gcd(a,n)!=1)
{
printf("-1\n");
continue;
}
LL m=euler_phi(n);
t=0;
finds(m);
sort(e,e+t);
LL ans=-1;
for(LL i=0; i<t; i++)
{
if(pow_mod(a,e[i],n)==1)
{
ans=e[i];
break;
}
}
printf("%lld\n",ans);
}
return 0;
}