csu 1755 阶数(欧拉函数)

该博客介绍了如何使用欧拉函数解决模数下a的阶数问题。题目要求找到最小正整数x,使得a^x ≡ 1 (mod n),并给出了一种基于欧拉定理的解决方案。当a和n互质时,存在解且x必须是欧拉函数phi(n)的因子。如果不互质,则无解。文章提供了样例输入和输出,并提到了在实现代码时需要注意的特判情况,即a%n == 1的情况。
摘要由CSDN通过智能技术生成

1755: 阶数

Time Limit: 1 Sec   Memory Limit: 128 MB
Submit: 54   Solved: 6
[ Submit][ Status][ Web Board]

Description

满足a^x≡1(mod n)的最小正整数x称为a模n的阶。

现给出两个正整数,求x。

Input

第一行输入k,表示有k组数据

之后k行每行两个数a,n(2<=a,n<=10^9)

Output

对于每组输入,用一行输出x的值,若不存在输出-1

Sample Input

2
2 3
2 4

Sample Output

2
-1
题意:中文题不解释

思路:欧拉定理:

设gcd(a,m)=1,必有正整数x,使得a^x=1(mod m),且设满足等式的最小正整数为x0,必满足x0|phi(m).注意m>1.

否则如果gcd(a,m)!=1,则方程a^x=1(mod m)没有解。

所以我们先判断a和n是不是互质,如果不是直接输出-1

互质一定有解,我们求出n的欧拉函数然后枚举因子即可。

有一个坑的地方卡了好久,就是因为你枚举出来的因子最小为2

所以需要特判一下a%n==1

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define LL long long
LL e[1000008],t;
LL pow_mod(LL a,LL n,LL mod)
{
    LL ans=1;
    while(n)
    {
        if(n&1) ans=ans*a%mod;
        a=a*a%mod;
        n>>=1;
    }
    return ans;
}
LL gcd(LL a,LL b)
{
    return b?gcd(b,a%b):a;
}
LL euler_phi(LL n)//欧拉函数
{
    LL ans=n,i;
    for(i=2; i*i<=n; i++)
    {
        if(n%i==0)
        {
            ans=ans/i*(i-1);
            while(n%i==0)n=n/i;
        }
    }
    if(n>1)ans=ans/n*(n-1);
    return ans;
}
void finds(LL n)
{
    e[t++]=n;
    for(LL i=2; i*i<=n; i++)
    {
        if(n%i==0)
        {
            if(i*i==n)
                e[t++]=i;
            else
            {
                e[t++]=i;
                e[t++]=n/i;
            }
        }
    }
}
int main()
{
    int T;
    LL a,n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld %lld",&a,&n);
        if(a%n==1)
        {
            printf("1\n");
            continue;
        }
        if(gcd(a,n)!=1)
        {
            printf("-1\n");
            continue;
        }
        LL m=euler_phi(n);
        t=0;
        finds(m);
        sort(e,e+t);
        LL ans=-1;
        for(LL i=0; i<t; i++)
        {
            if(pow_mod(a,e[i],n)==1)
            {
                ans=e[i];
                break;
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值