hdu6114.Chess(求组合数 Lucas定理 逆元)

题目链接;http://acm.hdu.edu.cn/showproblem.php?pid=6114

求组合数的模版题。(代码也是在网上找的)

(Lucas定理:大整数求组合数取余定理)
Lucas定理用来求C(a,b)mod p的值,其中p为素数。
数学表达式为:
Lucas(a,b,q)=C(a%q,b%q)*Lucas(a/p,b/p,p);
Lucas(a,0,q)=0;
通过这个定理就可以很方便的把大数的组合转化成小数。但其中还是要求C(a%q,b%q)%p,所以这里引入逆元来求。
【定义】若整数a,b,p, 满足a·b≡1(mod p).则称a 为b 模p 的乘法逆元, 即a=b- 1mod p.其中, p 是模数。
应用到组合数中来就是:
a!/[b!(a-b)!] % p == a! [b!*(a-b)!]-1 %p
【逆元求法】:
应用费马小定理,ap-1=1 mod p ,即 a*ap-2=1 mod p
也就是说 ap-2就是a的逆元。
当然这里求出来的逆元是在取模p的逆元,对我们最终目标没有影响。这也是比较方便而且比较好的方法。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>

using namespace std;
typedef long long LL;
const LL MOD=1000000007;
LL n,m;

LL quick_mod(LL a, LL b)
{
    LL ans = 1;
    a %= MOD;
    while(b)
    {
        if(b & 1)
        {
            ans = ans * a % MOD;
            b--;
        }
        b >>= 1;
        a = a * a % MOD;
    }
    return ans;
}

LL C(LL n, LL m)
{
    if(m > n) return 0;
    LL ans = 1;
    for(int i=1; i<=m; i++)
    {
        LL a = (n + i - m) % MOD;
        LL b = i % MOD;
        ans = ans * (a * quick_mod(b, MOD-2) % MOD) % MOD;
    }
    return ans;
}

LL Lucas(LL n, LL m)
{
    if(m == 0) return 1;
    return C(n % MOD, m % MOD) * Lucas(n / MOD, m / MOD) % MOD;
}

int main()
{
    int T;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%I64d%I64d", &n, &m);
        if(m > n)
        {
            LL a;
            a = m;
            m = n;
            n = a;
        }
        printf("%I64d\n", Lucas(n,m));
    }
    return 0;
}
//先预处理阶乘的逆元
#include <iostream>
#include <cstdio>

using namespace std;

typedef long long LL;
const int maxn = 200005;
const LL MOD = 1000000007;

LL fac[maxn]={1},inv[maxn]={1};

//LL quick_mod(LL a, LL b)
//{
//    LL ans = 1;
//    a %= MOD;
//    while(b){
//        if(b & 1){
//            ans = ans * a % MOD;
//            b--;
//        }
//        b >>= 1;
//        a = a * a % MOD;
//    }
//    return ans;
//}
//void init(){
//    for(int i=1;i<maxn;i++){
//        fac[i]=fac[i-1]*i%MOD;
//        inv[i]=quick_mod(fac[i],MOD-2)%MOD;
//    }
//}


LL extend_gcd(LL a, LL b, LL &x, LL &y) {
    if(a == 0 && b == 0) return -1;
    if(b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    LL d = extend_gcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}
LL mod_reverse(LL a) {
    LL x, y;
    LL d = extend_gcd(a, MOD,x, y);
    if(d == 1) return (x % MOD + MOD) % MOD;
    else return -1;
}

void init(){
    for(int i=1;i<maxn;i++){
        fac[i]=fac[i-1]*i%MOD;
        inv[i]=mod_reverse(fac[i]);
    }
}

LL C(int m,int n){
    if(m<n) return -1;
    return fac[m]*inv[n]%MOD*inv[m-n]%MOD;
}


int main()
{
    init();
    int t;
    LL n,m;
    scanf("%d", &t);
    while(t--)
    {
        scanf("%lld%lld", &n, &m);
        if(m > n)
        {
            LL a;
            a = m;
            m = n;
            n = a;
        }
        printf("%lld\n", C(n,m));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值