题目描述
如题,已知一个数列,你需要进行下面三种操作:
1.将某区间每一个数乘上x
2.将某区间每一个数加上x
3.求出某区间每一个数的和
输入输出格式
输入格式:第一行包含三个整数N、M、P,分别表示该数列数字的个数、操作的总个数和模数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k
操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k
操作3: 格式:3 x y 含义:输出区间[x,y]内每个数的和对P取模所得的结果
输出格式:输出包含若干行整数,即为所有操作3的结果。
输入输出样例
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=1000,M<=10000
对于100%的数据:N<=100000,M<=100000
(数据已经过加强^_^)
样例说明:
故输出应为17、2(40 mod 38=2)
#include<bits/stdc++.h>
using namespace std;
#define maxn 100000+100000
#define LL long long
int mod;
LL tre[maxn<<2];
int a[maxn];
LL add[maxn<<2];
LL sub[maxn<<2];
void push(int in,int rt){
sub[in*2]=1LL*sub[in*2]*sub[in]%mod;
sub[in*2+1]=1LL*sub[in*2+1]*sub[in]%mod;
add[in*2]=1LL*add[in*2]*sub[in]%mod;
add[in*2+1]=1LL*add[in*2+1]*sub[in]%mod;
tre[in*2]=1LL*tre[in*2]*sub[in]%mod;
tre[in*2+1]=1LL*tre[in*2+1]*sub[in]%mod;
sub[in]=1;
add[in*2]=(add[in*2]+add[in])%mod;
add[in*2+1]=(add[in*2+1]+add[in])%mod;
tre[in*2]=(tre[in*2]+add[in]*(rt-rt/2)%mod)%mod;
tre[in*2+1]=(tre[in*2+1]+add[in]*(rt/2)%mod)%mod;
add[in]=0;
}
void build(int in,int l,int r){
add[in]=0;
sub[in]=1;
if(l==r){
tre[in]=a[l];
return ;
}
int mid=(l+r)/2;
build(in*2,l,mid);
build(in*2+1,mid+1,r);
tre[in]=(tre[in]+tre[in*2]+tre[in*2+1])%mod;
}
void updata(int in,int l,int r, int va,int x,int y,int i){
push(in,y-x+1);
if(l==x&&y==r){
if(i==1){
sub[in]=1LL*sub[in]*va%mod;
tre[in]=1LL*tre[in]*va%mod;
}
if(i==2){
add[in]+=va;
add[in]%=mod;
tre[in]+=((y-x+1)*va)%mod;
}
return ;
}
int mid=(x+y)/2;
if(l>mid){
updata(in*2+1,l,r,va,mid+1,y,i);
}
else if(r<=mid){
updata(in*2,l,r,va,x,mid,i);
}
else{
updata(in*2,l,mid,va,x,mid,i);
updata(in*2+1,mid+1,r,va,mid+1,y,i);
}
tre[in]=(tre[in*2]+tre[in*2+1])%mod;
tre[in]%=mod;
}
LL query(int in,int l,int r,int x,int y){
push(in,y-x+1);
if(l==x&&y==r){
return tre[in]%mod;
}
int mid=(x+y)/2;
if(l>mid){
return query(in*2+1,l,r,mid+1,y)%mod;
}
else if(r<=mid){
return query(in*2,l,r,x,mid)%mod;
}
else{
return (query(in*2,l,mid,x,mid)%mod+query(in*2+1,mid+1,r,mid+1,y)%mod)%mod;
}
}
int main(){
int n,m;
cin>>n>>m>>mod;
for(int j=1;j<=n;j++){
scanf("%d",&a[j]);
}
build(1,1,n);
while(m--){
int z,x,y,k;
scanf("%d",&z);
if(z==1||z==2){
scanf("%d%d%d",&x,&y,&k);
updata(1,x,y,k,1,n,z);
}
else {
scanf("%d%d",&x,&y);
cout<<query(1,x,y,1,n)%mod<<endl;
}
}
return 0;
}