线段树模版

题目描述

如题,已知一个数列,你需要进行下面三种操作:

1.将某区间每一个数乘上x

2.将某区间每一个数加上x

3.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含三个整数N、M、P,分别表示该数列数字的个数、操作的总个数和模数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k

操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k

操作3: 格式:3 x y 含义:输出区间[x,y]内每个数的和对P取模所得的结果

输出格式:

输出包含若干行整数,即为所有操作3的结果。

输入输出样例

输入样例#1:  复制
5 5 38
1 5 4 2 3
2 1 4 1
3 2 5
1 2 4 2
2 3 5 5
3 1 4
输出样例#1:  复制
17
2

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=1000,M<=10000

对于100%的数据:N<=100000,M<=100000

(数据已经过加强^_^)

样例说明:

故输出应为17、2(40 mod 38=2)






#include<bits/stdc++.h>
using namespace std;
#define maxn 100000+100000
#define LL long long
int mod;
LL tre[maxn<<2];
int a[maxn];
LL add[maxn<<2];
LL sub[maxn<<2];
void push(int in,int rt){
      sub[in*2]=1LL*sub[in*2]*sub[in]%mod;
      sub[in*2+1]=1LL*sub[in*2+1]*sub[in]%mod;
      add[in*2]=1LL*add[in*2]*sub[in]%mod;
      add[in*2+1]=1LL*add[in*2+1]*sub[in]%mod;
      tre[in*2]=1LL*tre[in*2]*sub[in]%mod;
      tre[in*2+1]=1LL*tre[in*2+1]*sub[in]%mod;
      sub[in]=1;
      add[in*2]=(add[in*2]+add[in])%mod;
      add[in*2+1]=(add[in*2+1]+add[in])%mod;
      tre[in*2]=(tre[in*2]+add[in]*(rt-rt/2)%mod)%mod;
      tre[in*2+1]=(tre[in*2+1]+add[in]*(rt/2)%mod)%mod;
      add[in]=0;
}
void build(int in,int l,int r){
   add[in]=0;
   sub[in]=1;
   if(l==r){
      tre[in]=a[l];
      return ;
   }
   int mid=(l+r)/2;
   build(in*2,l,mid);
   build(in*2+1,mid+1,r);
   tre[in]=(tre[in]+tre[in*2]+tre[in*2+1])%mod;
}
void updata(int in,int l,int r, int va,int x,int y,int i){
    push(in,y-x+1);
    if(l==x&&y==r){
        if(i==1){
            sub[in]=1LL*sub[in]*va%mod;
            tre[in]=1LL*tre[in]*va%mod;
        }
        if(i==2){
          add[in]+=va;
          add[in]%=mod;
          tre[in]+=((y-x+1)*va)%mod;
        }
        return ;
    }
    int mid=(x+y)/2;
    if(l>mid){
        updata(in*2+1,l,r,va,mid+1,y,i);
    }
    else if(r<=mid){
        updata(in*2,l,r,va,x,mid,i);
    }
    else{
        updata(in*2,l,mid,va,x,mid,i);
        updata(in*2+1,mid+1,r,va,mid+1,y,i);
    }
    tre[in]=(tre[in*2]+tre[in*2+1])%mod;
    tre[in]%=mod;

}
LL query(int in,int l,int r,int x,int y){
    push(in,y-x+1);
    if(l==x&&y==r){
        return tre[in]%mod;
    }

    int mid=(x+y)/2;
    if(l>mid){
        return query(in*2+1,l,r,mid+1,y)%mod;
    }
    else if(r<=mid){
        return query(in*2,l,r,x,mid)%mod;
    }
    else{
        return (query(in*2,l,mid,x,mid)%mod+query(in*2+1,mid+1,r,mid+1,y)%mod)%mod;
    }
}
int main(){
    int n,m;
    cin>>n>>m>>mod;
    for(int j=1;j<=n;j++){
       scanf("%d",&a[j]);
    }
    build(1,1,n);
    while(m--){
       int z,x,y,k;
       scanf("%d",&z);
       if(z==1||z==2){
        scanf("%d%d%d",&x,&y,&k);
        updata(1,x,y,k,1,n,z);
       }
       else {
          scanf("%d%d",&x,&y);
          cout<<query(1,x,y,1,n)%mod<<endl;
       }
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值