VK Cup 2016 - Round 2 D. Little Artem and Random Variable(已知两个撒子掷出的点数较大为1,2,...,n的概率,较小为1,2,...,n概率)

D. Little Artem and Random Variable
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Little Artyom decided to study probability theory. He found a book with a lot of nice exercises and now wants you to help him with one of them.

Consider two dices. When thrown each dice shows some integer from 1 to n inclusive. For each dice the probability of each outcome is given (of course, their sum is 1), and different dices may have different probability distributions.

We throw both dices simultaneously and then calculate values max(a, b) and min(a, b), where a is equal to the outcome of the first dice, while b is equal to the outcome of the second dice. You don't know the probability distributions for particular values on each dice, but you know the probability distributions for max(a, b) and min(a, b). That is, for each x from 1 to n you know the probability thatmax(a, b) would be equal to x and the probability that min(a, b) would be equal to x. Find any valid probability distribution for values on the dices. It's guaranteed that the input data is consistent, that is, at least one solution exists.

Input

First line contains the integer n (1 ≤ n ≤ 100 000) — the number of different values for both dices.

Second line contains an array consisting of n real values with up to 8 digits after the decimal point  — probability distribution formax(a, b), the i-th of these values equals to the probability that max(a, b) = i. It's guaranteed that the sum of these values for one dice is 1. The third line contains the description of the distribution min(a, b) in the same format.

Output

Output two descriptions of the probability distribution for a on the first line and for b on the second line.

The answer will be considered correct if each value of max(a, b) and min(a, b) probability distribution values does not differ by more than10 - 6 from ones given in input. Also, probabilities should be non-negative and their sums should differ from 1 by no more than 10 - 6.

Examples
input
2
0.25 0.75
0.75 0.25
output
0.5 0.5 
0.5 0.5 
input
3
0.125 0.25 0.625
0.625 0.25 0.125
output
0.25 0.25 0.5 
0.5 0.25 0.25 


题意:

有两个不同的撒子,每个撒子都可以掷出1-n,而且掷出每个点的概率都是未知的,
现在已知两个撒子掷出的点数较大为1,2,...,n的概率,较小为1,2,...,n的概率
求每个撒子掷出1,2,...,n的概率


思路:
设P(a<=k)为x1,P(b<=k)为x2
P(max(a,b)<=k)=P(a<=k)*P(b<=k)=x1*x2=第一行的前缀和
P(min(a,b)>=k+1)=(1-P(a<=k))*(1-P(b<=k))=1+x1*x2-x1-x2=第二行的后缀和
根据韦达定理,可以求出关于x1,x2的二元方程组的b,c,a默认为1,解方程便可以了。


#include<bits/stdc++.h>
using namespace std;
const int maxn=100100;
double ans1[maxn],ans2[maxn];
double pre[maxn],suf[maxn];

void solve(double b,double c,double &x1,double &x2){
    double x=max(b*b-4*c,0.0);
    x1=(-b-sqrt(x))*0.5;
    x2=(-b+sqrt(x))*0.5;
}

int main(){
    int n;
    double a;
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%lf",&a);
        pre[i]=pre[i-1]+a;
    }
    for(int i=1;i<=n;i++)
        scanf("%lf",&suf[i]);
    for(int i=n;i>=1;i--)
        suf[i]+=suf[i+1];
    double x1,x2;
    for(int i=1;i<=n;i++){
        solve(-pre[i]-1+suf[i+1],pre[i],x1,x2);
        ans1[i]=x1,ans2[i]=x2;
    }
    for(int i=1;i<=n;i++)
        printf("%.10f ",ans1[i]-ans1[i-1]);
    printf("\n");
    for(int i=1;i<=n;i++)
        printf("%.10f ",ans2[i]-ans2[i-1]);
    printf("\n");
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值