LeNet-5网络结构解析

参考文章:
文章1
文章2
文章3

特殊性

  • 神经元间的连接是非全连接的
  • 同一层中某些神经元之间的连接的权重是共享的(即相同的)

权值共享

使用同一个Kernel

池化
转:http://blog.csdn.net/geekmanong/article/details/50605340

CNN的池化(图像下采样)方法很多:Mean pooling(均值采样)、Max pooling(最大值采样)、Overlapping (重叠采样)、L2 pooling(均方采样)、Local Contrast Normalization(归一化采样)、Stochasticpooling(随即采样)、Def-pooling(形变约束采样)。
例如最大池化

最大池化

为了简单起见,我用上面的图片作为例子,假设上面的图片大小是4*4的,如上图所示,然后图片中每个像素点的值是上面各个格子中的数值。然后我要对这张4*4的图片进行池化,池化的大小为(2,2),跨步为2,那么采用最大池化也就是对上面4*4的图片进行分块,每个块的大小为2*2,然后统计每个块的最大值,作为下采样后图片的像素值,具体计算如下图所示:
这里写图片描述

feature maps
转:http://blog.csdn.net/geekmanong/article/details/50605340

特征图,一张图片经过一个卷积核进行卷积运算,我们可以得到一张卷积后的结果图片,而这张图片就是特征图。在CNN中,我们要训练的卷积核并不是仅仅只有一个,这些卷积核用于提取特征,卷积核个数越多,提取的特征越多,理论上来说精度也会更高,然而卷积核一堆,意味着我们要训练的参数的个数越多。在LeNet-5经典结构中,第一层卷积核选择了6个,而在AlexNet中,第一层卷积核就选择了96个,具体多少个合适,还有待学习。

LeNet-5结构及参数计算

转:http://blog.csdn.net/geekmanong/article/details/50605340

输入 3232 的手写字体图片,这些手写字体包含 0 9 数字,也就是相当于 10 个类别的图片
输出:分类结果, 0 9 之间的一个数(softmax)

LeNet-5结构
输入层 3232 的图片,也就是相当于 1024 个神经元
C1层:选取 6 个特征卷积核,大小为55(不包含偏置),得到 6 个特征图,每个特征图的大小为325+1=28,也就是神经元的个数由 1024 减小到了 2828=784
输入层与C1层之间的参数: 6(55+1) ,对于卷积层C1,每个像素都与前一层的 55 个像素和 1 个bias有连接,有6(55+1)(2828)个连接
S2层:池化,是一个下采样层(为什么是下采样?利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息),有 6 1414的特征图,特征图中的每个单元与C1中相对应特征图的 22 邻域相连接。 S2 层每个单元对应 C1 4 个求和,乘以一个可训练参数,再加上一个可训练偏置。
C1与S2之间的参数:每一个22求和,然后乘以一个参数,加上一个偏置,共计 26=12 个参数。 S2 中的每个像素都与 C1 中的 22 个像素和 1 个偏置相连接,所以有651414=5880个连接
C3层:选取卷积核大小为 55 ,得到新的图片大小为 1010 我们知道S2包含: 61414 大小的图片,我们希望这一层得到的结果是: 161010 的图片。这 16 张图片的每一张,是通过 S2 6 张图片进行加权组合得到的,具体是怎么组合的呢?

S2与C3之间的组合
6个feature map与 S2 层相连的 3 个feature map相连接,后面6个feature map与 S24 feature map相连接,后面 3 个feature map与S2层部分不相连的 4 个feature map相连接,最后一个与S2层的所有feature map相连。卷积核大小依然为 55 ,总共有 6355+1 + 6455+1 + 3455+1 + 1655+1=1516 个参数。而图像大小为 1010 ,所以共有 151600 个连接。

S4层
池化,窗口大小为 22 ,有 16 个特征图,总共有 32 个参数

C3与S4之间的参数
16254+25=2000 个连接

C5层
总共 120 个feature map,每个feature map与 S4 层所有的feature map相连接,卷积核大小是 55 ,而 S4 层的feature map的大小也是 55 ,所以 C5 的feature map就变成了1个点,共计有 1202516+1=48120 个参数。

F6层
全连接
F6 相当于MLP中的隐含层,有 84 个节点,所以有 84120+1=10164 个参数。 F6 层采用了正切函数。

输出层
采用了RBF函数,即径向欧式距离函数

  • 6
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值