传送门:Educational Codeforces Round 8 E. Zbazi in Zeydabad
题意:给你一个n*m矩阵,每个点可能是’.’或者’z’,问有多少种Z子型(Z为一个正方形)
思路:我们先预处理出每个点向左和向左下能延伸的最大长度,那么以这个点为左上角的能组成的最大长度的Z字型便确定了
zzzz
..z.
.zzz
比如这个图中的(1,4)为左上角的点,那么它组成的Z的长度最长为3,然后只要判断那一条斜线上的点有多少个点向右延伸的长度大于等于3
因为这些点的坐标是不连续的,所以我们可以以斜线建立坐标,(每个点的位置表示它向右能延伸的位置的最大值),
统计过程就相当于离线化的树状数组
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> PI;
const int maxn=3002;
int cnt[maxn*2],n,m,id[maxn][maxn];
short Left[maxn][maxn],Left_down[maxn][maxn],Right[maxn+2][maxn+2],C[maxn*2][maxn];
vector<PI>tmp[maxn];
char s[maxn][maxn];
void add(int Belong,int x){
while(x>0)
C[Belong][x]++,x-=(x&-x);
}
long long sum(int Belong,int x){
long long ret=0;
while(x<=cnt[Belong])
ret+=C[Belong][x],x+=(x&-x);
return ret;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%s",s[i]+1);
int tot=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(id[i][j]==0)
for(int x=i,y=j;x<=n&&y>=1;x++,y--) id[x][y]=++cnt[i+j];
if(Left_down[i-1][j+1]!=0)
Left_down[i][j]=Left_down[i-1][j+1]-1;
else
for(int x=i,y=j;x<=n&&y>=1&&s[x][y]=='z';x++,y--) Left_down[i][j]++;
if(Left[i][j-1]!=0)
Left[i][j]=Left[i][j-1]+1;
else
Left[i][j]=(s[i][j]=='z' ? 1:0);
}
for(int j=m;j>=1;j--)
if(s[i][j]!='.'){
Right[i][j]=max(j,1*Right[i][j+1]);
tmp[Right[i][j]].push_back((PI){i+j,id[i][j]});
}
}
long long ans=0;
for(int i=m;i>=1;i--){
for(int j=0;j<tmp[i].size();j++)
add(tmp[i][j].first,tmp[i][j].second);
for(int j=1;j<=n;j++)
ans+=sum(i+j,id[j][i])-sum(i+j,id[j][i]+min(Left[j][i],Left_down[j][i]));
}
printf("%lld\n",ans);
return 0;
}