题意:有三个人分别在三个位置,每一秒各走一步,三个城市可以联络的要求是两两权值差小于等于K。问有多少种不同的方案,让这三个人可以联络。
思路:考虑dp,设dp[i][j][k]表示三个人分别在i,j,ki,j,k时的方案数,直接转移是O(n^6)的。
于是考虑加维,设dp[i][j][k][now]表示三个人分别在i,j,k时,目前准备走now这个人的方案数,那么转移复杂度就降低到了O(n^4)
总结:
本题是将边反向建,那么从这个点出发能到达其它点的方案数便相当于能从其它点到达这个点的方案数,
将三个人同时走->一个一个人的走
#include<bits/stdc++.h>
using namespace std;
const int MOD=998244353;
const int N=51;
int dp[N][N][N][4];
vector<int>G[N];
int a[N];
void add(int &x,int y){
x+=y;
if(x>=MOD)
x-=MOD;
}
int main(){
int _,n,m,K,q;
scanf("%d",&_);
while(_--){
scanf("%d%d%d%d",&n,&m,&K,&q);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
scanf("%d",&a[i]),G[i].clear();
int u,v,w;
for(int i=1;i<=m;i++)
scanf("%d%d",&u,&v),G[v].push_back(u);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
if(abs(a[i]-a[k])<=K&&abs(a[i]-a[j])<=K&&abs(a[j]-a[k])<=K)
dp[i][j][k][0]=1;
//从其他所有点x,y,z走now步到达i,j,k,now的方案数
for(int i=n;i>=1;i--)
for(int j=n;j>=1;j--)
for(int k=n;k>=1;k--){
for(int x=0;x<G[i].size();x++)
add(dp[G[i][x]][j][k][1],dp[i][j][k][0]);
for(int x=0;x<G[j].size();x++)
add(dp[i][G[j][x]][k][2],dp[i][j][k][1]);
for(int x=0;x<G[k].size();x++)
if(abs(a[i]-a[G[k][x]])<=K&&abs(a[i]-a[j])<=K&&abs(a[j]-a[G[k][x]])<=K)
add(dp[i][j][G[k][x]][0],dp[i][j][k][2]);
}
while(q--){
scanf("%d%d%d",&u,&v,&w);
printf("%d\n",dp[u][v][w][0]);
}
}
return 0;
}