uva--111History Grading +dp

题意:

   其实就是求两个序列的最长公共子序列。

思路:

  这个题目的输入是很坑爹的,如果把输入理解清楚后,这个题目就不难了。题目的输入表示的是该位置上的数放在哪个位置上,比如说输入是1,3,2,4其对应的序列应该是1,3,2,4;

  下面给出2份代码,一份是经典的解法,一份是今天我写的把问题转成DAG图上的最长路求解的代码。


代码如下:


#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

int d[30],n,map[30][30];

int dp(int i)
{
    if(d[i]>0) return d[i];
    d[i]=1;
    for(int j=1;j<=n;j++)
        if(map[i][j])
        {
            int t=dp(j)+1;
            if(d[i]<t)
                d[i]=t;
        }
    return d[i];
}

void Init()
{
    memset(d,0,sizeof(d));
    memset(map,0,sizeof(map));
}

int main()
{
    int i,j,a[30],b[30];
    while(scanf("%d",&n)!=EOF)
    {
         int x;
         for(i=1;i<=n;i++)
         {
             scanf("%d",&x);
             a[x]=i;
         }
         while(scanf("%d",&x)!=EOF)
         {
             Init(); b[x]=1;
             for(i=2;i<=n;i++)
             {
                 scanf("%d",&x);
                 b[x]=i;
             }
             for(i=1;i<=n;i++)
             {
                 for(j=1;j<=n;j++)
                    if(b[i]==a[j])
                        break;
                 for(int k=i+1;k<=n;k++)
                    for(int d=j;d<=n;d++)
                       if(b[k]==a[d])
                            map[i][k]=1;
             }
             int ans=0;
             for(i=1;i<=n;i++)
                ans=max(ans,dp(i));
             printf("%d\n",ans);
         }
    }
  return 0;
}


#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

int main()
{
    int i,j,a[30],b[30],dp[30][30],n;
    while(scanf("%d",&n)!=EOF)
    {
         int x;
         for(i=1;i<=n;i++)
         {
             scanf("%d",&x);
             a[x]=i;
         }
         while(scanf("%d",&x)!=EOF)
         {
             b[x]=1;
             for(i=2;i<=n;i++)
             {
                 scanf("%d",&x);
                 b[x]=i;
             }
           memset(dp,0,sizeof(dp));
           for(i=1;i<=n;i++)
              for(j=1;j<=n;j++)
              {
                     if(a[i]==b[j])
                          dp[i][j]=dp[i-1][j-1]+1;
                     else
                           dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
              }
              int ans=0;
              for(i=1;i<=n;i++)
                 for(j=1;j<=n;j++)
                      ans=max(ans,dp[i][j]);
              printf("%d\n",ans);
         }
    }
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值