【数据结构】二叉树

  二叉树是一种非常重要的数据结构,是后续很多数据结构与算法的基础,这篇文章就让我们来研究一下二叉树的底层原理与应用吧。

一、树的一般结构

1、概念

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看 起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的 。它具有以下的特点:
有一个特殊的结点,称为根结点,根结点没有前驱结点除根结点外,其余结点被分成M(M > 0) 个互不相交的集合 T1 T2 ...... Tm ,其中每一个集合 Ti (1 <= i <m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有 0 个或多个后继树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

2、一些名词解释

结点的度 :一个结点含有子树的个数称为该结点的度; 如上图: A 的度为 6
树的度 :一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为 6
叶子结点或终端结点 :度为 0 的结点称为叶结点; 如上图: B C H I... 等节点为叶结点
双亲结点或父结点 :若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图: A B 的父结点
孩子结点或子结点 :一个结点含有的子树的根结点称为该结点的子结点; 如上图: B A 的孩子结点
根结点 :一棵树中,没有双亲结点的结点;如上图: A
结点的层次 :从根开始定义起,根为第 1 层,根的子结点为第 2 层,以此类推
树的高度或深度 :树中结点的最大层次; 如上图:树的高度为 4
树的以下概念只需了解,在看书时只要知道是什么意思即可:
非终端结点或分支结点 :度不为 0 的结点; 如上图: D E F G... 等节点为分支结点
兄弟结点 :具有相同父结点的结点互称为兄弟结点; 如上图: B C 是兄弟结点
堂兄弟结点 :双亲在同一层的结点互为堂兄弟;如上图: H I 互为兄弟结点
结点的祖先 :从根到该结点所经分支上的所有结点;如上图: A 是所有结点的祖先
子孙 :以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是 A 的子孙
森林 :由 m m>=0 )棵互不相交的树组成的集合称为森林

二、二叉树

1、概念

当一颗树的所有结点度的最大值,即树的度为2时,就被称之为二叉树。顾名思义,就是由许多的二叉分支构成的树

从上图可以看出:
1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

2、特殊的二叉树

1. 满二叉树 : 一棵二叉树,如果 每层的结点数都达到最大值,则这棵二叉树就是满二叉树 。也就是说, 如果一棵 二叉树的层数为 K ,且结点总数是2^k-1 ,则它就是满二叉树
2. 完全二叉树 : 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K 的,有 n个结点的二叉树,当且仅当其每一个结点都与深度为K 的满二叉树中编号从 0 n-1 的结点一一对应时称之为完 全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

3、二叉树的性质

1. 若规定 根结点的层数为 1 ,则一棵 非空二叉树的第 i 层上最多有2^{i-1}  (i>0) 个结点

2. 若规定只有 根结点的二叉树的深度为 1 ,则 深度为 K 的二叉树的最大结点数是2^{k-1}(k>=0)
3. 对任何一棵二叉树 , 如果其 叶结点个数为 n0, 度为 2 的非叶结点个数为 n2, 则有 n0 n2 1
4. 具有 n 个结点的完全二叉树的深度 k \log_{2}{(n+1)} 上取整
5. 对于具有 n 个结点的完全二叉树 ,如果按照 从上至下从左至右的顺序对所有节点从 0 开始编号 ,则对于 序号为 i 的结点有
        若i>0 双亲序号: (i-1)/2 i=0 i 为根结点编号 ,无双亲结点
        若2i+1<n ,左孩子序号: 2i+1 ,否则无左孩子
        若2i+2<n ,右孩子序号: 2i+2 ,否则无右孩子

4、二叉树的存储

二叉树的存储结构 分为: 顺序存储 类似于链表的链式存储
本文就先介绍一下二叉树的链式存储吧
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式 ,具体如下:
// 孩子表示法
class Node {
    int val; // 数据域
    Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
    int val; // 数据域
    Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
    Node parent; // 当前节点的根节点
}

5、二叉树的基本操作

(1)二叉树的遍历

学习二叉树结构,最简单的方式就是遍历。所谓 遍历 (Traversal) 是指沿着某条搜索路线,依次对树中每个结 点均做一次且仅做一次访问 访问结点所做的操作依赖于具体的应用问题 ( 比如:打印节点内容、节点内容加 1) 。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。

在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱, 如果按 照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的 。如果 N 代表根节点, L 代表根节点的左子树,R 代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
  • NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
  • LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
  • LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点

上图就是对前序遍历的图解,该图的三种遍历结果如下:

前序遍历结果: 1 2 3 4 5 6
中序遍历结果: 3 2 1 5 4 6
后序遍历结果: 3 1 5 6 4 1

简单来说,前序遍历遵循中左右原则,即先访问中间的元素,接着依次访问它的左右子树,遍历子树时依旧遵循中左右原则,直到遍历完整颗二叉树为止,中序遍历则遵循左中右原则,后序遍历遵循左右中原则

代码实现:

    // 前序遍历
    public void preOrder(TreeNode root) {
        if(root == null) {
            return;
        }
        System.out.print(root.val+" ");
        //递归遍历左子树
        preOrder(root.left);
        //递归遍历右子树
        preOrder(root.right);
    }

    // 中序遍历
    public void inOrder(TreeNode root) {
        if(root == null) {
            return;
        }
        inOrder(root.left);
        System.out.print(root.val+" ");
        inOrder(root.right);
    }


    // 后序遍历
    public void postOrder(TreeNode root) {
        if(root == null) {
            return;
        }
        postOrder(root.left);
        postOrder(root.right);
        System.out.print(root.val+" ");
    }

(2)层序遍历

层序遍历 :除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1 ,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第 2 层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历

代码实现:

    //层序遍历
    void levelOrder(TreeNode root) {
        if(root==null){
            return;
        }
        System.out.print(root.val+"  ");
        Queue<TreeNode> queue=new LinkedList<>();
        if (root.left!=null)
            queue.offer(root.left);
        if(root.right!=null)
            queue.offer(root.right);
        while (!queue.isEmpty()){
            TreeNode node=queue.poll();
            System.out.print(node.val+"  ");
            if(node.left!=null)
                queue.offer(node.left);
            if(node.right!=null)
                queue.offer(node.right);
        }
    }

主要是通过了一个队列来依次存储了二叉树每一层的结点。

(3)其它基础操作

public static int nodeSize;

    /**
     * 获取树中节点的个数:遍历思路
     */
    void size(TreeNode root) {
        if(root==null)return;
        nodeSize++;
        size(root.left);
        size(root.right);
    }

    /**
     * 获取节点的个数:子问题的思路
     *
     * @param root
     * @return
     */
    int size2(TreeNode root) {
        if(root==null)return 0;
        return size2(root.left)+size2(root.right)+1;
    }


    /*
     获取叶子节点的个数:遍历思路
     */
    public static int leafSize = 0;

    void getLeafNodeCount1(TreeNode root) {
        if(root==null)leafSize++;
        size(root.left);
        size(root.right);
    }

    /*
     获取叶子节点的个数:子问题
     */
    int getLeafNodeCount2(TreeNode root) {
        if(root==null)return 1;
        return getLeafNodeCount2(root.left)+getLeafNodeCount2(root.right);
    }

    /*
    获取第K层节点的个数
     */
    int getKLevelNodeCount(TreeNode root, int k) {
        if(root==null)return 0;
        if(k==1){
            return 1;
        }
        return getKLevelNodeCount(root.left,k-1)+ getKLevelNodeCount(root.right,k-1);
    }

    /*
     获取二叉树的高度
     时间复杂度:O(N)
     */
    int getHeight(TreeNode root) {
        if(root==null){
            return 0;
        }
        int hl=getHeight(root.left);
        int hr=getHeight(root.right);
        if(hl<hr)return hr+1;
        else return hl+1;
    }


    // 检测值为value的元素是否存在
    TreeNode find(TreeNode root, char val) {
        if(root==null)return null;
        if(root.val==val)return root;

        TreeNode node=find(root.left,val);
        if(node!=null){
            return node;
        }
        node=find(root.right,val);
        if(node!=null){
            return node;
        }
        return null;
    }

总结

二叉树是一种非常重要的数据结构类型,它天然就蕴含着递归等思想,在今后的学习中也会发挥着非常重要的作用。本文先简单介绍了一些二叉树的特点。下一篇文章我们将会更加深入的剖析二叉树。


那么本篇文章就到此为止了,如果觉得这篇文章对你有帮助的话,可以点一下关注和点赞来支持作者哦。作者还是一个萌新,如果有什么讲的不对的地方欢迎在评论区指出,希望能够和你们一起进步✊

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值