二叉树是一种非常重要的数据结构,是后续很多数据结构与算法的基础,这篇文章就让我们来研究一下二叉树的底层原理与应用吧。
一、树的一般结构
1、概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
有一个特殊的结点,称为根结点,根结点没有前驱结点除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合Ti (1 <= i <m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
2、一些名词解释
结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点根结点:一棵树中,没有双亲结点的结点;如上图:A结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推树的高度或深度:树中结点的最大层次; 如上图:树的高度为4树的以下概念只需了解,在看书时只要知道是什么意思即可:非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等节点为分支结点兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙森林:由m(m>=0)棵互不相交的树组成的集合称为森林
二、二叉树
1、概念
当一颗树的所有结点度的最大值,即树的度为2时,就被称之为二叉树。顾名思义,就是由许多的二叉分支构成的树
从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
2、特殊的二叉树
1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是,则它就是满二叉树。
2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
3、二叉树的性质
1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有(i>0)个结点
2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是(k>=0)
3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+14. 具有n个结点的完全二叉树的深度k为上取整
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点若2i+1<n,左孩子序号:2i+1,否则无左孩子若2i+2<n,右孩子序号:2i+2,否则无右孩子
4、二叉树的存储
二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
本文就先介绍一下二叉树的链式存储吧
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:
// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}
5、二叉树的基本操作
(1)二叉树的遍历
学习二叉树结构,最简单的方式就是遍历。所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
- NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
- LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
- LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点
上图就是对前序遍历的图解,该图的三种遍历结果如下:
前序遍历结果:1 2 3 4 5 6中序遍历结果:3 2 1 5 4 6后序遍历结果:3 1 5 6 4 1
简单来说,前序遍历遵循中左右原则,即先访问中间的元素,接着依次访问它的左右子树,遍历子树时依旧遵循中左右原则,直到遍历完整颗二叉树为止,中序遍历则遵循左中右原则,后序遍历遵循左右中原则
代码实现:
// 前序遍历
public void preOrder(TreeNode root) {
if(root == null) {
return;
}
System.out.print(root.val+" ");
//递归遍历左子树
preOrder(root.left);
//递归遍历右子树
preOrder(root.right);
}
// 中序遍历
public void inOrder(TreeNode root) {
if(root == null) {
return;
}
inOrder(root.left);
System.out.print(root.val+" ");
inOrder(root.right);
}
// 后序遍历
public void postOrder(TreeNode root) {
if(root == null) {
return;
}
postOrder(root.left);
postOrder(root.right);
System.out.print(root.val+" ");
}
(2)层序遍历
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历
代码实现:
//层序遍历
void levelOrder(TreeNode root) {
if(root==null){
return;
}
System.out.print(root.val+" ");
Queue<TreeNode> queue=new LinkedList<>();
if (root.left!=null)
queue.offer(root.left);
if(root.right!=null)
queue.offer(root.right);
while (!queue.isEmpty()){
TreeNode node=queue.poll();
System.out.print(node.val+" ");
if(node.left!=null)
queue.offer(node.left);
if(node.right!=null)
queue.offer(node.right);
}
}
主要是通过了一个队列来依次存储了二叉树每一层的结点。
(3)其它基础操作
public static int nodeSize;
/**
* 获取树中节点的个数:遍历思路
*/
void size(TreeNode root) {
if(root==null)return;
nodeSize++;
size(root.left);
size(root.right);
}
/**
* 获取节点的个数:子问题的思路
*
* @param root
* @return
*/
int size2(TreeNode root) {
if(root==null)return 0;
return size2(root.left)+size2(root.right)+1;
}
/*
获取叶子节点的个数:遍历思路
*/
public static int leafSize = 0;
void getLeafNodeCount1(TreeNode root) {
if(root==null)leafSize++;
size(root.left);
size(root.right);
}
/*
获取叶子节点的个数:子问题
*/
int getLeafNodeCount2(TreeNode root) {
if(root==null)return 1;
return getLeafNodeCount2(root.left)+getLeafNodeCount2(root.right);
}
/*
获取第K层节点的个数
*/
int getKLevelNodeCount(TreeNode root, int k) {
if(root==null)return 0;
if(k==1){
return 1;
}
return getKLevelNodeCount(root.left,k-1)+ getKLevelNodeCount(root.right,k-1);
}
/*
获取二叉树的高度
时间复杂度:O(N)
*/
int getHeight(TreeNode root) {
if(root==null){
return 0;
}
int hl=getHeight(root.left);
int hr=getHeight(root.right);
if(hl<hr)return hr+1;
else return hl+1;
}
// 检测值为value的元素是否存在
TreeNode find(TreeNode root, char val) {
if(root==null)return null;
if(root.val==val)return root;
TreeNode node=find(root.left,val);
if(node!=null){
return node;
}
node=find(root.right,val);
if(node!=null){
return node;
}
return null;
}
总结
二叉树是一种非常重要的数据结构类型,它天然就蕴含着递归等思想,在今后的学习中也会发挥着非常重要的作用。本文先简单介绍了一些二叉树的特点。下一篇文章我们将会更加深入的剖析二叉树。
那么本篇文章就到此为止了,如果觉得这篇文章对你有帮助的话,可以点一下关注和点赞来支持作者哦。作者还是一个萌新,如果有什么讲的不对的地方欢迎在评论区指出,希望能够和你们一起进步✊