一、 优先级队列
1、概念
在前面的文章中介绍过队列,队列是一种先进先出
(FIFO)
的数据结构
,但有些情况下,
操作的数据可能带有优先级,一般出队
列时,可能需要优先级高的元素先出队列
,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话;初中那会班主任排座位时可能会让成绩好的同学先挑座位。
在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列
(Priority Queue)
。
二、优先级队列的模拟实现
JDK1.8
中的
PriorityQueue
底层使用了堆这种数据结构
,而堆实际就是在完全二叉树的基础上进行了一些调整。
1、 堆的概念
如果有一个
关键码的集合
K = {k0
,
k1
,
k2
,
…
,
kn-1}
,把它的所有元素
按完全二叉树的顺序存储方式存储 在一
个一维数组中
,并满足:
Ki <= K2i+1
且
Ki<= K2i+2
(Ki >= K2i+1
且
Ki >= K2i+2) i = 0
,
1
,
2…
,则
称为 小堆
(
或大堆)
。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
- 堆中某个节点的值总是不大于或不小于其父节点的值;
- 堆总是一棵完全二叉树。
2、 堆的存储方式
从堆的概念可知,
堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储
,
注意:对于 非完全二叉树,则不适合使用顺序方式进行存储 ,因为为了能够还原二叉树, 空间中必须要存储空节 点,就会导致空间利用率比较低
将元素存储到数组中后,可以根据以下性质
对树进行还原。假设
i
为节点在数组中的下标,则有:
若i>0 , 双亲序号: (i-1)/2
若i=0 , i 为根结点编号 ,无双亲结点
若2i+1<n ,左孩子序号: 2i+1 ,否则无左孩子
若2i+2<n ,右孩子序号: 2i+2 ,否则无右孩子
3、 堆的创建
(1)堆向下调整
对于集合
{ 27,15,19,18,28,34,65,49,25,37 }
中的数据,如果将其创建成堆呢?
仔细观察上图后发现:
根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可
。
向下过程
(
以小堆为例
)
:
1.
让
parent
标记需要调整的节点,
child
标记
parent
的左孩子
(
注意:
parent
如果有孩子一定先是有左孩子
)
2.
如果
parent
的左孩子存在,即
:child < size
,进行以下操作,直到
parent
的左孩子不存在
parent右孩子是否存在,存在找到左右孩子中最小的孩子,让
child
进行标
将parent
与较小的孩子
child
比较,如果:
parent小于较小的孩子child
,调整结束
否则:交换parent与较小的孩子
child
,交换完成之后,
parent
中大的元素向下移动,可能导致子
树不满足对的性质,因此需要继续向下调整,即parent = child;
child = parent*2+1;
然后继续
2
public void shiftDown(int[] array, int parent) {
// child先标记parent的左孩子,因为parent可能右左没有右
int child = 2 * parent + 1;
int size = array.length;
while (child < size) {
// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
if(child+1 < size && array[child+1] < array[child]){
child += 1;
}
// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
if (array[parent] <= array[child]) {
break;
}else{
// 将双亲与较小的孩子交换
int t = array[parent];
array[parent] = array[child];
array[child] = t;
// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
parent = child;
child = parent * 2 + 1;
}
}
}
注意:在调整以 parent 为根的二叉树时,必须要满足 parent 的左子树和右子树已经是堆了才可以向下调整。
时间复杂度分析:
最坏的情况
即图示的情况,
从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O()
(2)堆的创建
那对于普通的序列
{ 1,5,3,8,7,6 }
,即根节点的左右子树不满足堆的特性,又该如何调整呢?
public static void createHeap(int[] array) {
// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整
int root = ((array.length-2)>>1);
for (; root >= 0; root--) {
shiftDown(array, root);
}
}
(3)建堆的时间复杂度
因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明
(
时间复杂度本来看的就是近似值,多几个节点不影响最终结果)
:
因此:
建堆的时间复杂度为
O(N)
4、 堆的插入与删除
(1) 堆的插入
堆的插入总共需要两个步骤:
1. 先将元素放入到底层空间中
(
注意:空间不够时需要扩容
)
2. 将最后新插入的节点向上调整,直到满足堆的性质
public void shiftUp(int child) {
// 找到child的双亲
int parent = (child - 1) / 2;
while (child > 0) {
// 如果双亲比孩子大,parent满足堆的性质,调整结束
if (array[parent] > array[child]) {
break;
}
else{
// 将双亲与孩子节点进行交换
int t = array[parent];
array[parent] = array[child];
array[child] = t;
// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
child = parent;
parent = (child - 1) / 1;
}
}
}
(2) 堆的删除
注意:堆的删除一定删除的是堆顶元素。
具体如下:
1. 将堆顶元素对堆中最后一个元素交换
2. 将堆中有效数据个数减少一个
3. 对堆顶元素进行向下调整
5、 用堆模拟实现优先级队列
public class MyPriorityQueue {
// 演示作用,不再考虑扩容部分的代码
private int[] array = new int[100];
private int size = 0;
public void offer(int e) {
array[size++] = e;
shiftUp(size - 1);
}
public int poll() {
int oldValue = array[0];
array[0] = array[--size];
shiftDown(0);
return oldValue;
}
public int peek() {
return array[0];
}
}
三、常用接口介绍
1、PriorityQueue的特性
Java
集合框架中提供了
PriorityQueue
和
PriorityBlockingQueue
两种类型的优先级队列,
PriorityQueue
是线
程不安全的,
PriorityBlockingQueue
是线程安全的
,本文主要介绍
PriorityQueue
。
关于
PriorityQueue
的使用要注意:
1. 使用时必须导入
PriorityQueue
所在的包,即:
import java . util . PriorityQueue ;
2. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出ClassCastException异常
3. 不能
插入
null
对象,否则会抛出
NullPointerException
4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容
5. 插入和删除元素的时间复杂度为O()
6. PriorityQueue
底层使用了堆数据结构
7. PriorityQueue
默认情况下是小堆
---
即每次获取到的元素都是最小的元素
2、 PriorityQueue常用接口介绍
(1) 优先级队列的构造
此处只是列出了
PriorityQueue
中常见的几种构造方式,其他的学生们可以参考帮助文档
static void TestPriorityQueue(){
// 创建一个空的优先级队列,底层默认容量是11
PriorityQueue<Integer> q1 = new PriorityQueue<>();
// 创建一个空的优先级队列,底层的容量为initialCapacity
PriorityQueue<Integer> q2 = new PriorityQueue<>(100);
ArrayList<Integer> list = new ArrayList<>();
list.add(4);
list.add(3);
list.add(2);
list.add(1);
// 用ArrayList对象来构造一个优先级队列的对象
// q3中已经包含了三个元素
PriorityQueue<Integer> q3 = new PriorityQueue<>(list);
System.out.println(q3.size());
System.out.println(q3.peek());
}
注意:默认情况下, PriorityQueue 队列是小堆,如果需要大堆需要用户提供比较器
// 用户自己定义的比较器:直接实现Comparator接口,然后重写该接口中的compare方法即可
class IntCmp implements Comparator<Integer>{
@Override
public int compare(Integer o1, Integer o2) {
return o2-o1;
}
}
public class TestPriorityQueue {
public static void main(String[] args) {
PriorityQueue<Integer> p = new PriorityQueue<>(new IntCmp());
p.offer(4);
p.offer(3);
p.offer(2);
p.offer(1);
p.offer(5);
System.out.println(p.peek());
}
}
此时创建出来的就是一个大堆
(2)插入/删除/获取优先级最高的元素
static void TestPriorityQueue2(){
int[] arr = {4,1,9,2,8,0,7,3,6,5};
// 一般在创建优先级队列对象时,如果知道元素个数,建议就直接将底层容量给好
// 否则在插入时需要不多的扩容
// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低
PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);
for (int e: arr) {
q.offer(e);
}
System.out.println(q.size()); // 打印优先级队列中有效元素个数
System.out.println(q.peek()); // 获取优先级最高的元素
// 从优先级队列中删除两个元素之和,再次获取优先级最高的元素
q.poll();
q.poll();
System.out.println(q.size()); // 打印优先级队列中有效元素个数
System.out.println(q.peek()); // 获取优先级最高的元素
q.offer(0);
System.out.println(q.peek()); // 获取优先级最高的元素
// 将优先级队列中的有效元素删除掉,检测其是否为空
q.clear();
if(q.isEmpty()){
System.out.println("优先级队列已经为空!!!");
}
else{
System.out.println("优先级队列不为空");
}
}
注意:以下是
JDK 1.8
中,
PriorityQueue
的扩容方式:
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
private void grow(int minCapacity) {
int oldCapacity = queue.length;
// Double size if small; else grow by 50%
int newCapacity = oldCapacity + ((oldCapacity < 64) ?
(oldCapacity + 2) :
(oldCapacity >> 1));
// overflow-conscious code
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
queue = Arrays.copyOf(queue, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
优先级队列的扩容说明:
- 如果容量小于64时,是按照oldCapacity的2倍方式扩容的
- 如果容量大于等于64,是按照oldCapacity的1.5倍方式扩容的
- 如果容量超过MAX_ARRAY_SIZE,按照MAX_ARRAY_SIZE来进行扩容
五、总结
优先级队列的底层就是一颗完全二叉树,通过一定的算法来控制插入节点与其他结点的关系,从而构成大根堆与小根堆这些特殊结构,这种结构能够保证最大或最小的元素始终保持在根节点的位置,这样在取出根节点的时候,通过不断地调整使剩下元素构成新的堆,在接着取出根节点元素,这样反复操作就能很轻松的取出若干元素中最大或最小的几个元素了,在许多算法题中能起到非常重要的作用
那么本篇文章就到此为止了,如果觉得这篇文章对你有帮助的话,可以点一下关注和点赞来支持作者哦。作者还是一个萌新,如果有什么讲的不对的地方欢迎在评论区指出,希望能够和你们一起进步✊