Beauty Contest
Description
Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, earning the title 'Miss Cow World'. As a result, Bessie will make a tour of N (2 <= N <= 50,000) farms around the world in order to spread goodwill between farmers and their cows. For simplicity, the world will be represented as a two-dimensional plane, where each farm is located at a pair of integer coordinates (x,y), each having a value in the range -10,000 ... 10,000. No two farms share the same pair of coordinates.
Even though Bessie travels directly in a straight line between pairs of farms, the distance between some farms can be quite large, so she wants to bring a suitcase full of hay with her so she has enough food to eat on each leg of her journey. Since Bessie refills her suitcase at every farm she visits, she wants to determine the maximum possible distance she might need to travel so she knows the size of suitcase she must bring.Help Bessie by computing the maximum distance among all pairs of farms. Input
* Line 1: A single integer, N
* Lines 2..N+1: Two space-separated integers x and y specifying coordinate of each farm Output
* Line 1: A single integer that is the squared distance between the pair of farms that are farthest apart from each other.
Sample Input 4 0 0 0 1 1 1 1 0 Sample Output 2 Hint
Farm 1 (0, 0) and farm 3 (1, 1) have the longest distance (square root of 2)
Source |
题意是给你n个点,求他们之间距离最远的两个点的坐标。
求多边形直径的模版题。
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <map>
#include <string>
#include <stack>
#include <cctype>
#include <vector>
#include <queue>
#include <set>
#include <utility>
#include <cassert>
using namespace std;
///#define Online_Judge
#define outstars cout << "***********************" << endl;
#define clr(a,b) memset(a,b,sizeof(a))
#define lson l , mid , rt << 1
#define rson mid + 1 , r , rt << 1 | 1
#define mk make_pair
#define FOR(i , x , n) for(int i = (x) ; i < (n) ; i++)
#define FORR(i , x , n) for(int i = (x) ; i <= (n) ; i++)
#define REP(i , x , n) for(int i = (x) ; i > (n) ; i--)
#define REPP(i ,x , n) for(int i = (x) ; i >= (n) ; i--)
const int MAXN = 50000 + 50;
const int MAXS = 10000 + 50;
const int sigma_size = 26;
const long long LLMAX = 0x7fffffffffffffffLL;
const long long LLMIN = 0x8000000000000000LL;
const int INF = 0x7fffffff;
const int IMIN = 0x80000000;
const int inf = 1 << 30;
#define eps 1e-10
const long long MOD = 1000000000 + 7;
const int mod = 10007;
typedef long long LL;
const double PI = acos(-1.0);
typedef double D;
typedef pair<int , int> pii;
typedef vector<int> vec;
typedef vector<vec> mat;
#define Bug(s) cout << "s = " << s << endl;
///#pragma comment(linker, "/STACK:102400000,102400000")
///考虑误差的加法运算
double add(double a , double b)
{
if(abs(a + b) < eps * (abs(a) + abs(b)))return 0;
return a + b;
}
///二维向量结构体
struct P
{
double x , y;
P(){}
P(double x , double y) : x(x) , y(y){}
P operator + (P p)
{
return P(add(x , p.x) , add(y , p.y));
}
P operator - (P p)
{
return P(add(x , - p.x) , add(y , - p.y));
}
P operator * (double d)
{
return P(x * d , y * d);
}
double dot(P p)///点乘
{
return add(x * p.x , y * p.y);
}
double det(P p)///叉乘
{
return add(x * p.y , - y * p.x);
}
};
///判断点q是否在线段p1-p2上
bool on_seg(P p1 , P p2 , P q)
{
return (p1 - q).det(p2 - q) == 0 && (p1 - q).dot(p2 - q) <= 0;
}
///计算直线p1-p2与直线q1-q2的交点坐标
P intersection(P p1 , P p2 , P q1 , P q2)
{
return p1 + (p2 - p1) * ((q2 - q1).det(q1 - p1) / (q2 - q1).det(p2 - p1));
}
///字典序比较
bool cmp_x(const P& p , const P& q)
{
if(p.x != q.x)return p.x < q.x;
return p.y < q.y;
}
///求凸包
vector<P> convex_hull(P* ps , int n)
{
sort(ps , ps + n , cmp_x);
int k = 0;///凸包顶点数
vector<P> qs(n * 2);///构造中的凸包
///构造凸包的下侧
for(int i = 0 ; i < n ; i++)
{
while(k > 1 && (qs[k - 1] - qs[k - 2]).det(ps[i] - qs[k - 1]) <= 0)k--;
qs[k++] = ps[i];
}
///构造凸包的上侧
for(int i = n - 2 , t = k ; i >= 0 ; i--)
{
while(k > t && (qs[k - 1] - qs[k - 2]).det(ps[i] - qs[k - 1]) <= 0)k--;
qs[k++] = ps[i];
}
qs.resize(k - 1);
return qs;
}
///距离的平方
double dist(P p , P q)
{
return (p - q).dot(p - q);
}
int n;
P ps[MAXN];
///旋转卡壳
void solve()
{
vector<P> qs = convex_hull(ps , n);
int n = qs.size();
if(n == 2)///特别处理凸包退化的情况
{
printf("%.0f\n" , dist(qs[0] , qs[1]));
return ;
}
int i = 0, j = 0;
for(int k = 0 ; k < n ; k++)
{
if(!cmp_x(qs[i] , qs[k]))i = k;///最右(上)点的序号
if(cmp_x(qs[j] , qs[k]))j = k;///最左(下)点的序号
}
double res = 0;
int si = i , sj = j;
while(i != sj || j != si)///直到旋转180度
{
res = max(res , dist(qs[i] , qs[j]));
///判断先转到边i——(i + 1)的法线方向还是边j——(j + 1)的法线方向
if((qs[(i + 1) % n] - qs[i]).det(qs[(j + 1) % n] - qs[j]) < 0)
{
i = (i + 1) % n;
}
else j = (j + 1) % n;
}
printf("%.0f\n" , res);
}
int main()
{
while(~scanf("%d" , &n))
{
for(int i = 0 ; i < n ; i++)scanf("%lf%lf" , &ps[i].x , &ps[i].y);
solve();
}
return 0;
}