Codeforces Round #256 (Div. 2) - C - Painting Fence

数据比较弱,所以dfs可以过。很好想每个板子都可以分成横着刷和纵着刷,可以写出递推方程

f( l , r, h ) = min( r - l + 1 , f( l, p-1, a[p]) + f(p+1, r, a[p]) + a[p] - h)

p 为 [ l , r ] 中最小值的下标,暴力求解可以过

#include <cstring>
#include <iostream>
#include <cstdlib>
#include <cctype>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#define INF (int)(1e9)
#define maxn 5010
using namespace std;
typedef long long ll;
int a[maxn];
int find_min(int l, int r) {
    int ix, res = INF+10;
    for (int i = l; i <= r; ++ i) {
        if (a[i] < res) {
            ix = i;
            res = a[i];
        }
    }
    return ix;
}
int dfs(int l, int r, int h) {
    if (l > r) return 0;
    int ix = find_min(l,r);
    int m = a[ix];
    return min(r-l+1, dfs(l,ix-1,m) + dfs(ix+1,r,m)+m-h);
}
int main() {
    int n;
    while (cin >> n) {
        for (int i = 0; i < n; ++ i) {
            cin >> a[i];
        }
        cout << dfs(0,n-1,0) << endl;
    }
}

可以使用RMQ优化求最小值的过程

#include <cstring>
#include <iostream>
#include <cstdlib>
#include <cctype>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#define INF (int)(1e9)
#define maxn 100010
using namespace std;
typedef long long ll;
int a[maxn], f[maxn][100];
void RMQ_init(int n) {
    for (int i = 1; i <= n; ++ i) f[i][0] = a[i];
    for (int j = 1; j <= int( log(double(n))/log(2.0) ); ++ j)
        for (int i = 1; i <= n-(1<<(j-1)); ++ i)
            f[i][j] = min(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}

int RMQ(int L, int R) {
    int t = int( log(double(R-L+1))/log(2.0) );
    return min(f[L][t],f[R+1-(1<<t)][t]);
}
int dfs(int l, int r, int h) {
    if (l > r) return 0;
    int ix = RMQ(l,r);
    int m = a[ix];
    return min(r-l+1, dfs(l,ix-1,m) + dfs(ix+1,r,m)+m-h);
}
int main() {
    int n;
    while (cin >> n) {
        for (int i = 1; i <= n; ++ i) {
            cin >> a[i];
        }
        RMQ_init(n);
        cout << dfs(1,n,0) << endl;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值