神、上帝以及老天爷(递推专题)

Problem Description
协会活动为了活跃气氛,组织者举行了一个别开生面、奖品丰厚的抽奖活动,这个活动的具体要求是这样的:

首先,所有参加晚会的人员都将一张写有自己名字的字条放入抽奖箱中;
然后,待所有字条加入完毕,每人从箱中取一个字条;
最后,如果取得的字条上写的就是自己的名字,那么“恭喜你,中奖了!”

大家可以想象一下当时的气氛之热烈,毕竟中奖者的奖品是大家梦寐以求的Twins签名照呀!不过,正如所有试图设计的喜剧往往以悲剧结尾,这次抽奖活动最后竟然没有一个人中奖!

我的神、上帝以及老天爷呀,怎么会这样呢?

不过,先不要激动,现在问题来了,你能计算一下发生这种情况的概率吗?

不会算?难道你也想以悲剧结尾?!
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(1< n<=20),表示参加抽奖的人数。
Output
对于每个测试实例,请输出发生这种情况的百分比,每个实例的输出占一行, 结果保留两位小数(四舍五入),具体格式请参照sample output。
Sample Input
1
2
Sample Output
50.00%
Hint
hdoj2048 有链接提示的题目请先去链接处提交程序,AC后提交到SDUTOJ中,以便查询存档。
Source
HDU LCY 递推求解专题练习

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
using namespace std;
//C语言课本上的例题,基本上不会了。。是时候拿起课本来了。
//解题思路
/*当没有人中奖的时候,有n个人抽奖,共有f[n]种抽法,如果第n个人抽不到第n个,共有n-1种抽法,比如这个人
抽第k个,那么接下来就有两种情况:第一种是第k个人抽到了第n个,那么剩下n-2个人,方法有f[n-2]种,如果第
k个人没有抽到第n个,那么剩下共有f[n-1]种抽法。综上,f[n]=(n-1)*(f[n-1]+f[n-2]),易得 
f[1]=0,f[2]=1,f[3]=2;对于所有的排列,n个人共有g[n]=n!种方法,则发生的比例就为f[n]/g[n],
*/
int main()
{
    double f[22]={0};
    int c,n;
    f[1]=0;
    f[2]=1;
    f[3]=2;
    for(int i=4; i<=20; i++)
        f[i] = (i-1)*(f[i-1]+f[i-2]);
    scanf("%d",&c);
    while(c--)
    {
        scanf("%d",&n);
        double sum = 1;
        for(int i=1; i<=n; i++)
            sum *= i;
        printf("%.2lf%%\n",f[n]/(sum*1.0)*100);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值